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Recent evidence indicates that using multiple forward rates sharply predicts future excess returns on U.S.
e . 7, . . . fv e . . '

I'rcasury Bonds, with the R="s being around 30% . The projection coefficients in these regressions exhibit a
distinet pattern that relates to the maturity of the forward rate. These dimensions of the data, in conjunction

with the transition dynamics of hond yiclds, offer a serious challenge to term structure models. In this
article we show that a regime-shifting term structure model can empirically account for these challenging

data features. Alternative models. such as alfine specification, fail to account for these important features.
We find that regimes in the model are intimately related to bond risk premia and real business cycles.
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1. INTRODUCTION

Term structure models with rcgime shifts, considered by
Naik and Lec (1997) and Bansal and Zhou (2002), capture
the important feature that the aggregate economy is subject
to discrete and persistent changes in the business cycle. The
business cycle fluctuations, together with the monctary policy
responsc to them, have significant impacts not only on the short-
term interest rate, but also on the entire term structure. Regime-
shifting term structure models represent a parsimonious way of
introducing interactions between the business cycles, the term
structure, and risk premia on bonds. Using the U.S. Treasury
yield data from 1964 to 1995, Bansal and Zhou (2002) found
that the model-implied regime changes usually lead or coin-
cide with economic recessions. Therefore, the term structure
regimes seem (o confirm and complement the real business cy-
cles. This evidence also allows for the possibility that this class
of term structure models may be able to capture the dynamics
of risk premia on bonds.

The most common strategy for understanding bond risk pre-
miums is to study deviations from the expectations hypothesis.
One form of the violation, that the regression of yicld changes
on yicld spreads produces negative slope coefficient instcad
of unity (Campbell and Shiller 1991), has been uddressed in
many recent articles (e.g., Roberds and Whiteman 1999; Dai
and Singleton 2002; Bansal and Zhou 2002; Evans 2003). An-
other form of violation of the expcctations hypothesis is that
the forward rate can predict the excess bond return (Fama and
Bliss 1987). More recently, Cochrane and Piazzesi (2002) doc-
umented that using multiple forward rates to predict bond ex-
cess returns generates very high predictability of bond excess
returns, with adjusted R*'s from the regression of around 30%.
Further, they showed that the coefficients of multiple forward-
rate regressors form a tent-shaped pattern refated to the maturity
of the lorward rate. The size of the predictability and nature of
projection cocfficients is quite puzzling and constitutes a chal-
lenge (o term structure models.

Business cycle: Efficientmethod of moments; Expectation hypothesis; Regime shifting;

The main contribution of this article is to account for the
predictability evidence from the perspective of latent factor
term structure models. When evaluating the plausibility of var-
ious term structure models, it is important to not focus ex-
clusively on the predictability issue; previous work (e.g., Dai
and Singleton 2000; Bansal and Zhou 2002; Ahn, Dittmar,
and Gallant 2002) highlights the difficulties that many received
models have in capturing the transition dynamics of yields (i.e.,
conditional volatility and conditional cross-correlation across
yields). The predictability evidence, in conjunction with the
transition dynamics, constitutes a sufficiently rich set of data
features for discriminating across alternative term structure
models and to evaluate their plausibility. The main empirical
finding of this article is that the regime-shifting term struc-
ture models can simultaneously justify the size and nature of
bond return predictability and the transition dynamics of yields.
More specifically, we find that models with regime shifts can re-
produce the high predictability and the tent-shaped regression
coefficients documented by Cochrane and Piazzesi (2002). Ad-
ditionally, the regime-shifting term structure model reproduces
the dynamics of conditional volatility and cross-correlation
across yields. In contrast, commonly used multifactor Cox—
Ingersoli-Ross (CIR) (Cox, Ingersoll, and Ross 1985) and
affine models cannot capture these dimensions of the data. Our
overall evidence indicates that incorporating regime shifts is
important for interpreting key aspects of Treasury bond market
data.

We use U.S. Treasury yield data from 1964-2001. The pe-
riod 1996-2000 poses a tough challenge for standard asset
pricing models, with unprecedented long economic growth
and bull market run. At the same time, this period includes
several cconomic recessions and periods of economic boom.
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Using the whole sample, we find that the conditional corre-
lation between the long and short yields vary over a range
of about 40-80%. The conditional volatilities of the long and
short yields also reveal very large variations. Despite this, when
evaluating the U.S. Treasury yiclds data from 1964-2001, our
regime-shifting model still stands out as the best-performing
candidate. The regime indicator is related to business cycles in
the data; for example, the model-based regime indicator pre-
dicts the 2001-2002 recession.

To estimate various models under consideration, we usc the
efficient method of moments (EMM), developed by Bansal,
Gallant, Hussey, and Tauchen (1995) and Gallant and Tauchen
(1996). Tests of overidentifying restrictions based on the
EMM method provide a way to compare different, potentially
nonnested models. This estimation technique forces the model
to confront several important aspects of the data, such as con-
ditional volatility and correlation across different yields. To
generate diagnostic evidence to help discriminate across mod-
els, we rely on the reprojection methods developed by Gallant
and Tauchen (1998). Our empirical cvidence suggests that the
benchmark CIR and affine model specifications with up to
three factors are sharply rejected with p values of 0. The only
model specification that {inds support in the data (with p value
of 1%) is our preferred two-factor regime-switching model,
where the market prices of risks depend on regime shifts.
Our diagnostics of the various models show that the our pre-
ferred regime-shifting model specification produces the small-
est cross-sectional pricing errors across all of the specifications
we considered. Using reprojections, we computed the condi-
tional correlations and volatility under the null of the various
models. Our results show that only the regime-shifting models
can capture the large variations in conditional correlations and
conditional volatility that are observed in the data.

The article is organized as follows. Section 2 reviews the
regime-shifting term structure model developed by Bansal and
Zhou (2002). Section 3 discusses the empirical estimation re-
sults, the specification tests, and an array of diagnostics based
on the conditional correlation and volatility. It also examines
cross-sectional implications on pricing errors, violations of the
expectation hypothesis of forward rate predictability, and the
link between regime classification and business cycles, espe-
cially the recent economic recession. Section 4 presents some
concluding remarks.

2. TERM STRUCTURE MODEL WITH
REGIME SHIFTS

In this section we review the term structure model with
regime shifts proposed by Bansal and Zhou (2002). The deriva-
tion focuses on a single-factor specification; the multifactor
extension is straightforward (see Bansal and Zhou 2002). To
capture the idea that the aggregate economy is subject to regime
shifts, we model the regime-shifting process as a two-state
Markov process, as was done by Hamilton (1989). Suppose that
the evolution of tomorrow’s regime, s;+1 = 0, 1, given today’s
regime, s; = 0, 1, is governed by the transitional probability ma-
trix of a Markov chain,

= |:7[0() 7!()|:|‘ (N
T T
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where 3 . mj =1 and 0 < m; < 1. In addition to the
discrete regime shifts, the economy is also affected by a
continuous-state variable,

Xip1 — Xe = Ksiy ((').\', B = XI) + Os,p Xiltgy 1, 2)

where «y,,,, 05, and oy, ., are the regime-dependent mean
reversion, long-run mean, and volatility parameters. All of
these parameters are subject to discrete regime shifts. Specif-
ically, X;41 — X; = «0(60 — Xi) + o0~/ XU if the regime
sie1=0, and X;11 — X; = 101 — X;) + o1/ X1 if the
regime 5,41 = 1. Note that the innovation in process (2), 1, is
conditionally normal given X; and s,4.|. For analytical tractabil-
ity we assume that the process for regime shifts s, is indepen-
dent of X;41—4, [ =0, ..., 00, this is similar to the assumptions
made in Hamilton’s regime-switching models. We also assume
that the agents in the economy observe the regimes, although
the econometrician may possibly not observe the regimes.

The pricing kernel for this economy is similar to that in stan-
dard models, except for incorporating regime shifts,

5
doui N X A
Mzn:cxp[,_-/..[< »‘m) éﬁ_,\,u
Tt Os141

Xittrqq - (3)

The foregoing specification of the pricing kernel captures the
intuition that these aggregate processes are latent and subject to
regime shifts (as in Hamilton 1989). Note that the A parameter
that affects the risk premia on bonds is also subject to regime
shifts and hence depends on s, 1. Bansal and Zhou (2002) pre-
sented a general equilibrium model that leads to the pricing ker-
nel in (3).

With regime shifts, we conjecture that the bond price with
n periods to maturity at date ¢ depends on the regime s, = i,
i=0,1,and X;

Pi(t,n) = exp{—A;(n) — Bi(n)X,}.

The one-period-ahead bond price, analogously, depends on
Si+1 and Xy,
Py, (t+1,n—1) =exp{—As,, (n— 1) — By,,,(n — DX;11}.

In addition, we impose the boundary condition A;(0) =
B;(0) = 0 and the normalization A;(1) = 0, B;(1) = 1, for
i =0, I; thatis, 7, = X;. The key asset pricing condition is

X, .s',}

= —X,E [B-\'/ l (n— l))‘-‘ﬂ | "Vl]' (4)
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The conditional mean and volatility of the bond return in regime
Sl are s, and (7”2“&.1 S Equation (4) captures the idea
that all risk premia and bond prices at date ¢ depend only on
s; and X;. To gain further intuition regarding this risk premium
result, note that —oy,, By, (n — 1)4/X; is the exposure of the
bond return to the standardized shock w41 in regime s.y.
Further, [As,,, /o5, X1 is the exposure of the pricing kernel
to w41 in regime s,41. The covariance between these exposures
determines the compensation for risk in regime s.1. Hence the
risk compensation for regime s,4.1 is the product

s
—(T-“IHB.\‘IH(” = I)\/ATI X [l"]\/};} = _B.\'/u(” = ]))\.\-” Xt

St41
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Given information regarding s;, X;, and the regime transition
probabilities, agents integrate out the future regime, s,4 1, which
leads to the risk premium result stated in (4). In the absence
of regime shifts, the risk premium in (4), would simply be
—X;B(n — 1)A. Hence incorporating regime shifts makes the
“beta” of the asset (i.e., the coefficient on X;) be time varying
and dependent on the current regime. This fashion of making
the asset “beta” time varying is potentially important for cap-
turing the behavior of risk premia on bonds. In this model the
market price of risk (i.e., the risk premium for an asset with a
unit exposure to uy1) is E¢[Ag,,, /0y, \.s',lf\/y(,, which is clearly
regime dependent.

Given (4), the solution for the bond prices can be derived by
solving for the unknown coefficients A and B. In particular,

Bo(n)
Bi(n)
:[m) 7701}
ATV 3!
[(1 — ko — A)Bo(n—1) — SodB3(n—1) + 1 }
X
(1 —=x1=XA)Bi(n—1) - %UEB%(H* 1)+ 1
and

Ao(m) | _ [ moo o1 || Ao(n — 1) + «oboBo(n — 1) 6)
Ar(n) 7o 7 || Ain—1)+k101Bi(n—1) |’

with initial conditions Ag(0) = A1(0) = Bp(0) = B1(0) = 0.
Note that bond price coefficients are mutually dependent on
both regimes; current bond prices reflect the agent’s expecta-
tions regarding regime shifts in the future. Finally, the bond
yield of a K factor regime-shifting model can be derived in an
analogous manner,

InPs(t,n) As(n) ud Bis (1) X1
SRS T R .|_Z_ il

n n n
k=]

Ys(t,n) =— (7

The foregoing regime-shifting term structure model does
not entertain the possibility of separate risk compensation for
regime shifts. In other words, the risk premium for a sccurity
that pays | dollar contingent on a regime shift at date ¢ + |
is 0. The model can be extended to include explicit and sepa-
rate compensation for regime-shifting risks. Such an extension
entails additional parameters, however. We have not discussed
or pursued this more embellished version of the model, because
we found identifying and estimating its parametcrs very difti-
cult. Further, as documented later, the key puzzles in the term
structure data, can be accounted for by the more parsimonious
model described earlier.

Dai, Singleton, and Yang (2003) recently incorporated a sep-
arate risk premium for regime-shifts but, for analytical tractabil-
ity, assumed that the within-regime volatility is constant. Given
the nature of yields data, it would scem that allowing within-
regime volatility to be stochastic is quite important. It remains
to be scen whether the specification that assumes a constant
within-regime volatility can account for the obscrved time-
varying volatility and conditional cross-correlation of yields.
As discussed in the next section in our empirical work. these
dimensions of the term structure data are important in discrim-
inating across term structure models.

Journal of Business & Economic Statistics, October 2004

3. EMPIRICAL ESTIMATION AND
MODEL EVALUATION

3.1 Estimation Methodology

To utilize a consistent approach for evaluation and estimation
across the different models, we rely on the simulation-based
EMM estimator developed by Bansal et al. (1995) and Gallant
and Tauchen (1996). The EMM estimator comprises three
steps. The first, the projection step, entails estimating a reduced-
form model (the auxiliary model) that provides a good statisti-
cal description of the data. Multivariate bond yiclds are difficult
data to model, because they exhibit extreme persistence in lo-
cation and scale, time-varying correlations, and non-Gaussian
innovations. Because we do not have good a priori information
on the specifications of a model that captures all of these fea-
tures, we utilize a seminonparametric (SNP) series expansion.
The SNP expansion has a vector autoregressive—autoregressive
conditional heteroscedasticity (VAR-ARCH) Gaussian density
as its lecading term, and the departures from the leading term
are captured by a Hermite polynomial expansion. We elected
to use a simpler, ARCH-like leading term instead of a gener-
alized ARCH (GARCH)-type leading term because of the sim-
ilar problems with multivariate GARCH-type modelis of bond
yields noted by Ahn et al. (2002).

In the second step, the estimation step, the score function
from the log-likelihood estimation of the auxiliary model is
used to generate moments for a generalized method of moments
(GMM)-type criterion function. The score function provides a
set of moment conditions that are true by construction and are
to be confronted by all term structure models under consider-
ation. In the computations, the score function is averaged over
the simulation output from a given term structure model and
the criterion function is minimized with respect to the parame-
ters of the term structure model under consideration. By using
the scores from the nonparametric SNP density as the moment
conditions, each model is forced to match the conditional dis-
tribution of the observed 6-month and 5-year yields. Being a
GMM-type estimator, EMM provides a chi-squared measure of
goodncss of fit. In particular, the normalized objective function
acts as an omnibus specification test, which is distributed as a
chi-squared test (as in GMM) with degrees of freedom equal to
the number of scores (moment conditions) minus the number of
parameters in the particular term structure model. The distance
matrix (the weight matrix in GMM) used in constructing the
specification test is identical across different model specifica-
tions (the null hypotheses). Consequently, the p values based on
this specification test can be directly compared across different
structural models to identify the best model specification. (For
a discussion of the importance of having the same distance ma-
trix, for a consistent comparison across models, see Hansen and
Jagannathan 1997.) It is well recognized in the literature that
tests for the absence of regime shifts against a regime-shifting
alternative require nonstandard approaches (sec Hansen 1992;
Garcia 1998). Our approach of comparing all the considered
models to a common nonparametric density (the SNP density),
allows us to rank order all of the considered models according
to the p values implied by the EMM criterion function. The
advantage of using the nonparametric SNP (as discussed by
Gallant and Tauchen 1999), is that it can asymptotically con-
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Table 1. Summary Statistics

1-month  3-month  6-month  1-year  2-year  3-year  4-year  5-year
Mean 5.9424 6.3765 6.5971 6.8106 7.01566 7.1711  7.2909 7.3545
Standard deviation 2.4499 2.5767 2.6038 256239 24559 23814 2.3491 2.3240
Skewness 1.4278 1.3717 1.3041 11737 1.1288 1.1283 1.1003 1.0565
Kurtosis 5.4659 5.1336 4.8778 4.4157 41226 4.0313 3.9196 3.7344
NOTE: There are 451 monthly observations of the yields with 8 maturities. The data are obtained from CRSP Treasury Bill and Bond files,

ranging from June 1964 to December 2001.

verge to virtually any smooth distributions, including mixture
distributions (as is the case with a model of regime shifts).

The third step is reprojection, or postestimation analysis of
model simulations. Because EMM is a simulation-based esti-
mator, long simulated realizations from each estimated model
are available for analysis. These simulations can be used to
compute statistics of interest that can be compared to analo-
gous values computed from the observed data. The reprojected
statistics should be thought of as population quantities implied
by the model at the estimated parameter values. Among other
things, we compute the reprojected Cochrane—Piazzesi forward
rate regressions for models with and without regime shifting.

3.2 Data Description

The dataset comprises monthly (June 1964-December 2001)
bond yield data obtained from the Center for Research in Se-
curity Prices (CRSP). There are a total of 451 monthly obser-
vations with 8 maturities: f-, 3-, and 6-month and 1-, 2-, 3-,
4-, and 5-year. It is important to recognize that the data period
1964-2001 contains six major recessions and six major expan-

(a)

sions, which, as stated earlier, provides potential economic mo-
tivation for incorporating regime shifts. The summary statistics
of these monthly yields are displayed in Table 1. On average,
the yield curve is upward sloping. The standard deviation, pos-
itive skewness, and kurtosis are systematically higher for short
maturities than for long ones. To incorporate important time se-
ries and cross-sectional aspects of term structure data, we focus
on a short-term yield and a long-term yicld, the yiclds on the
6-month bill and the 5-year note. Time series plots of the basis
yields are shown in Figure 1. It is not unusual for using two or
three time series to estimate a model with three or more latent
factors, because the identification is coming from the number
of scores (or moment restrictions) generated from the auxil-
iary model (see, e.g., Chernov, Gallant, Ghysels, and Tauchen
2003).

We very briefly summarize the first step estimation results
for the nonparametric SNP specification, which was guided
by the BIC information criterion; details are available on re-
quest. The leading term of the bivariate SNP density has onc
lag in the VAR-based conditional mean (L,, = 1) and five lags

Six-Month Zero-Coupon Yield

18 T T T

T T T T

6
4
2 | 1 | 1 | L | |
1965 1970 1975 1980 1985 1990 1995 2000
(b)
Five-Year Zero-Coupon Yield
18 T T T T T T T T

1 |

I |
1975 1980

1970

L 1 L
1985 1990 1995

Figure 1. Observed Short-Term (a) and Long-Term (b) Rates.
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in ARCH specification (L, = 5). The preferred specification ac-
commodates departures from conditional normality via a Her-
mite polynomial of degree 4 (K. = 4). This “scmiparametric
ARCH? specitication is similar to that proposed by Engle and
Gonzdlez-Rivera (1991) and allows for skewness and kurtosis
in the crror distribution. The total number of parameters for the
specification is 7, = 28; hence each model must confront a total
of 28 data-determined moment conditions.

The conditional moments of the estimated SNP density for
the observed interest rates are available analytically. It is fairly
instructive to focus on some specific aspects of the estimated
nonparametric SNP bivariate density. The top pancl in Figure 6
(Sec. 3.6) gives the estimated conditional volatilitics and cross-
correlations of the 6-month and 5-year yields, which seem to be
very persistent and fairly volatile. The 6-month yield has a wide
range of conditional volatility that pcaks around 1980, whereas
the range for the 5-ycar yield volatility is narrow. The range for
the conditional correlation is from about 40% to 80%, a wide
range indeed. The most volatile period for bond yields, the early
1980s, is associated with a considerable drop in the conditional
correlation. The behavior of the conditional variance and the
cross-correlation, as documented carlicr, poses a serious chal-
lenge to the various term structure models under consideration.

[t is important to note that our estimation of the various term
structure models utilizes information in the bivariate SNP den-
sity based on the 6-month and 5-ycar yields. We do not rely

Journal of Business & Economic Statistics, October 2004

directly on bond excess returns, and hence our estimation does
not directly utilize information on the predictability of bond re-
turns. We use the estimated model to evaluate via simulation,
if the model can reproduce the predictability regressions dis-
cussed by Cochrane and Piazzesi (2002). These predictability
regressions are challenging for two reasons. First, the size of
the predictability is fairly high; the R?’s in these projections are
quite large. Second, the nature of the predictability—the “tent
shape” of the multiple regression coefficients—captures the un-
conditional covariation of future bond returns with current for-
ward rates. A reasonable term structure model should account
for both of these features of the predictability along with the
important data aspects embodied in the bivariate SNP density
for 6-month and S-year yields.

3.3 Model Estimation Results

Table 2 gives the main EMM estimation results for four dif-
ferent models: one-factor regime-shifting (1-factor[RS]), two-
factor square root (2-factor|CIR]), two-factor regime-shifting
(2-factor|RS]), and three-factor affine (3-factor{ AF]). Three ad-
ditional models (not reported here)—one-factor square root,
two-factor Naik and Lee (1997), and three-factor square root—
were also estimated, with results similar to those reported by
Bansal and Zhou (2002); none of these can replicate the ex-

Table 2. Model Estimation by Efficient Method of Moments

1-factor[RS]

2-factor[CIR]

2-factor[RS] 3-factorfAF]

Factor 1, regime 0

010 .00566 (.00021) .00548 (.00051) .00501 (.00069) .14e—6 (.01e—6)
K10 .01678 (.00201) .03515 (.00304) .01109 (.00285) .03530 (.00247)
010 .00652 (.00034) .00508 (.00032) .00504 (.00039) .00006 (.00000)
Ao .00721 (.00165) .02624 (.00178) .01877 (.00273) —.04136 (.00223)
Factor 1, regime 1

011 .00218 (.00031) .00629 (.00060)

K14 .01498 (.00243) .04655 (.00971)

011 .00194 (.00018) .00075 (.00021)

A1 —.00324 (.00276) —.00673 (.00310)

Factor 2, regime 0

Ooo .00091 (.00008) .00039 (.00310) .00340 (.00024)
K20 .02666 (.00305) .01817 (.00004) .02487 (.00660)
090 .00545 (.00011) .00305 (.00502) —.00005 (.00001)
Aoo —.04212 (.00389) —.04938 (.00024) .00097 (.00012)
003 —.27376 (.05107)
Factor 2, regime 1

Oo1 .00031 (.000083)

Koq .02982 (.00603)

Aoq -.05977 (.00576)

Factor 3

K3 .01925 (.00074)
030 —.45467 (.00257)

X5 336.76 (2.9700)
Transitional probability Pr{s; 1|st}

700 .97564 (.00565) .94007 (.00008)

711 .94489 (.00001) .93005 (.00005)

Specification test

Chi-squared 94.523 56.066 23.211 42.803

p value .00000 .00003 .0100 .00017
Degrees of freedom 18 20 10 15

NOTE: The four term structure models are laid out in Section 2. The 1-factor[RS] or 2-factor[RS] model refers to the regime-shifting specification.

The 2-factor[CIR] model is the Cox—Ingersoll-Ross model with two factors. The 3-factor[AF] model is the affine specification mentioned in the text. The
simulation size of the EMM is 50,000 for all the four models.
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pectation hypothesis puzzle and other data features of interest.
The results reported here are for a simulation size of 50,000.
The 1-factor[RS] model is rejected with a p value < 0. The
2-factor| CIR] model is an improvement, but this specifica-
tion is still sharply rejected; the model specification test drops
to 56.066 with p value < .0003. The best model among all
specifications is the 2-factor[RS}| model, with a p value reach-
ing {%. The estimated regime-shifting probabilities arc both
just under .95. All of the parameters of the model are estimated
rather accurately. The transition probabilities reported for the
2-factor[RS] specification are comparable to those found by
other authors (see Gray 1996; Hamilton 1988; Cai 1994).

The 2-factor[RS] model can be viewed as a three-factor
model with the regime-shifting factor being a multiplicative
or nonlinear third factor. For a fair comparison of this model,
we also estimated a three-factor affine term structure model,
(3-factor[AF]), preferred by Dai and Singleton (2000), who
found considerable empirical support for this specification us-
ing the post-1987 swap yield data. The discrete time counterpart
to this affine specification is

Xippt — Xie = k101 — X10) + 01/ X1t141,
X1 — Xor = k(02 — Xor) + 02u2141

+ 023/ Xt 1, 3)
X341 — X3t = k3(Xor — X30) + v X10U3041

+ 03101V X141 + 03200U214 1
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Associated with this 3-factor[AF] specification are three mar-
ket prices of risk parameters, which, as before, we label Ay,
k=1,2,3. In all, there are 13 parameters to estimate. As re-
ported in Table 2, the 3-factor[ AF] specification is sharply re-
jected with X2(15) = 42.803 and a p value of .0017. In a more
general semiparametric setting, Ghysels and Ng (1998) rejected
the affine restrictions on the conditional mean and variance of
yields.

Table 3 reports the 7-ratio diagnostics for the 28 moment con-
ditions implied by each of the 4 specifications. These 28 scores
(moment conditions) should, for a correctly specified model,
be close to 0. If the structural model under consideration
matches the particular moment under consideration, then at a
conventional 5% level of significance, the t-ratio should be
smaller than 1.96. The reported f-ratios arc not adjusted for
parameter estimation, so these #’s are therefore asymptotically
slightly downward biased relative to 2.0. They thus must be
interpreted with cautious intuition guided by the overall chi-
squared diagnostics, which are frec of such asymptotic bias.
For the 1-factor[RS] model, 17 out of 28 moment tests are re-
jected, with fitting of conditional volatility especially bad. The
2-factor[CIR | model has only nine f-ratios higher than 1.96, and
adding one more lincar factor dramatically improves the fitting
of conditional volatility and conditional mean. It is remarkable
that our favored 2-factor[RS] model matches well all of the
mean, volatility, and polynomial scores, except for the single
ARCH(1) score of the 6-month yield that is just over 2.0. The
3-factor[ AF] specification is certainly an improvement over the

Table 3. Diagnostic t-Ratios

Parameter Description 1-factor[RS]  2-factor[CIR]  2-factor[RS]  3-factor[AF]
Hermite
A(1) 00 00
A(2) 01 00 .30 —1.038 —.752 .528
A(3) 10 00 2.13 240 —.646 .898
A(4) 02 00 1.47 1.874 1.809 2.215
A(5) 11 00 -3.18 —2.258 1.251 —1.402
A(6) 20 00 2.36 —2.752 1.921 —1.538
A7) 03 00 .08 -.072 —.152 1.431
A(8) 30 00 .40 —1.093 —.442 —.582
A9) 04 00 1.05 2.018 1.634 2.384
A(10) 40 00 2.20 —1.230 1.423 —.389
Mean
Y1) u(1) 2.61 .263 —1.022 1.100
Y (2) u(2) —.69 —.716 —.299 —.487
¥ (3) u(1), y(1), lag 1 —1.75 .859 .963 .568
Y (4) u(2), y(1), lag 1 =41 —.407 —.342 =218
W (5) u(1), y(2), lag 1 —2.31 534 1.312 017
¥ (6) u(2), y(2), lag 1 .29 —.047 —.219 .085
ARCH
(1) A1) 1.85 —3.402 1.264 —2.140
7(2) R(2) —4.27 —2.924 155 —2.692
7(3) R(3) 3.98 3.579 1.369 2.962
7(4) R(1), z(1), lag 5 2.56 —1.606 1.576 —.640
7(9) R(3), z(2), lag 5 2.76 2.063 104 1.641
7(10) R(1), z(1), lag 4 2.57 —1.807 1.858 -.467
T(15) R(3), z(2), lag 4 2.80 1.916 .933 1.891
7(16) R(1), z(1), lag 3 1.68 —2.097 1.008 —1.621
7(21) R(3), z(2), lag 3 4.41 3.474 1.963 3.198
7(22) R(1), z(1), lag 2 2.99 212 1.644 —.003
7(27) R(3), z(2), lag 2 2.25 1.846 879 1.597
7(28) R(1), z(1), lag 1 3.46 —.529 2.061 .325
7(33) R(3), z(2), lag 1 2.62 1.893 1.294 1.811

NOTE: The SNP score generator is explained in Section 3.2. The t-ratios are testing whether the fitted sample moments
are equal to 0, as predicted by population moments of the SNP density.
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one- or two-factor models, but it still has 4 out of 13 ARCH
scores and 2 out of 9 Hermite scores that are not well matched.
Overall, our preferred 2-factor[RS| specification scems to have
the greatest advantage in matching the conditional volatility and
covariance (i.c., the ARCH scores) and the non-Gaussian poly-
nomials (i.e., the Hermite polynomial parameters) relative o
other multifactor CIR or affine specifications.

3.4 Risk Premium Analysis

An important diagnostic is to cvaluate whether the dif-
ferent model specifications can justify the obscrved patterns
of violations of the expectations hypothesis—in particular, as
documented by Fama and Bliss (1987), the predictability of for-
ward rates on excess returns. The simple existence of the pre-
dictability from forward rate to excess return (R significantly
greater than 0) is easily explained by any dynamic term struc-
ture model with time-varying risk premia. However, the greater
challenge, as recently popularized by Cochrane and Piazzesi
(2002), is to explain the robust tent-shaped pattern of the slope
coefficients when multiple forward rates are used as regressors.
Another form of the expectation hypothesis violation (not a fo-
cus of this article) is the negative slope instead of unity when
regressing yicld changes on yield spreads (Campbell and Shiller

Journal of Business & Economic Statistics, October 2004

1991). Bansal and Zhou (2002) provided evidence that the two-
factor regime-shifting model is the only one that can replicate
this type of expectations hypothesis violation at the shorter ma-
turitics, whereas all multifactor models fair well at the longer
maturitics.

Following the same conventions of Cochrane and Piazzesi
(2002), we work with log bond prices (i.e., p’,‘ is the log of the
price at 7 of a k year bond) and geometric (log) yields and re-
turns, so y! = -p,' is the geometric yield on the 1-year bond.
Cochrane and Piazzesi (2002) considered the regression of ex-
cess returns of bonds on the yields and the forward rates,

exk 1o = Bro + By,

5
+ Y Buf + €

=2

where ex f‘+ 2= pf;llz —pf —y,l is the excess return on the k year
bond and f* = pk~1 — pk is the forward rate. Note that ext 1o
is effectively the return on holding a k year bond for 1 year in
excess of the 1-year yield. This excess return data is collected
monthly, which leads to the usual overlap in return data.

We first check the robustness of the findings of Cochrane and

Prazzesi (2002). As shown in the top panel of Table 4, the re-

Table 4. Predictability of Bond Excess Returns Using Multiple Forward Rates

R? 4-year 1-year, 3-year 1-year, 3-year, 5-year  1-year, 3- to 5-year  1-to 5-year
R?’s in the data

2-year bond 1744 .2619 .3088 .3187 .3280
3-year bond 1322 .2538 .3326 .3357 .3373
4-year bond .1368 .2634 .3406 3617 .3639
5-year bond 1297 .2640 .3163 .3308 .3336
Coefficient Intercept 1-year 3-year 5-year R2
Regression coefficients and R? in the data

2-year bond —2.2222 (.5747) —.6753 (.1743) 1.7041 (.2527) —.7245 (.2109) .3088
3-year bond —3.5737 (1.0078) —1.4040 (.3207) 3.5688 (.4704) —1.6963 (.3657) .3326
4-year bond —4.9032 (1.4403) —2.0580 (.4597) 5.0008 (.6552) —2.3245 (.4864) .3406
5-year bond —6.2848 (1.7667) —2.5018 (.5674) 5.6134 (.8329) —2.3573 (.6004) .3163
1-factor[RS]

2-year bond 8.3712 —.4714 4.4622 —4.9444 .0164
3-year bond 16.0127 —.8423 7.9971 —8.8619 .0149
4-year bond 20.1520 —1.1259 10.7298 —11.8906 .0138
5-year bond 24.0829 —1.3394 12.8183 —14.2055 .0129
2-factor[CIR]

2-year bond —1.8475 —.2066 —.0302 .3613 1741
3-year bond -3.6219 —.3211 —-.0105 .6765 .2209
4-year bond —5.5087 —.3954 .0380 .9938 .2538
5-year bond —7.6055 —.4542 .1060 1.3377 .2718
2-Factor[RS]

2-year bond -3.3175 —.8523 1.9875 —.6116 1914
3-year bond —6.1451 —1.4279 3.2531 —.8669 .2308
4-year bond —8.9064 —1.8229 4.0214 —.8262 .2936
5-yearbond —11.9532 —2.1004 4.4245 —.5051 .3621
3-Factor[AF]

2-year bond 9.3180 .6074 —1.8067 1.3361 .1256
3-year bond 16.4960 1.2536 —3.7574 2.8143 1745
4-year bond 22.6622 1.9470 —5.8732 4.4451 .2206
5-year bond 28.6284 2.6990 —8.1863 6.2503 .2579
NOTE: The dependent variable in all of the regressions is the 1-year return from holding a bond with n years to maturity less the yield on a bond with one year

to maturity. This annual excess return is tracked monthly. All R?’s are adjusted for degrees of freedom. The sample size in the data is 451 observations. In the top
panel the predictability regression is run using 1-, 2-, 3-, 4-, and 5-year forward rates as regressors. Because the R? using 1-, 3-, 5-year forward rates is almost
the same as using additional forward rates (see 1-, 3-5, and 1-5 years), we focus on the 1-, 3-, and 5-year projections. Newey-West robust standard errors are
reported in parentheses in the “Regression Coefficients and R? in the Data” section for this projection. The results reported for the 1-factor[RS], 2-factor[CIR],
2-factor[RS], and 2-factor[AF] models are based on simulating 50,000 observations from the estimated term structure model and running the same regression as

reported in the “Regression Coefficients and R? in the Data” section.
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Figure 2. Predictability Regression Coefficients. (a) Observed data; (b) 1-factor[RS] model,; (c) 2-factor[RS] model; (d) 2-factor[CIR] model;

(e) 3-factor[AF] model (
= =« « 5-year bond, 1-year excess return).

gression R? with five forward rates reaches 36%, which con-
firms their findings. An important note is that the difference
between using three, four, or five forward rates is negligible,
whereas reducing to two or one forward rates dramatically de-
creases the R?. This seems to suggest the existence of three la-
tent factors, and the use of five regressors creates a near-perfect
colinearity problem up to cross-sectional measurement errors

2-year bond, 1-year excess return; = = 3-year bond, 1-year excess return; - == « 4-year bond, 1-year excess return;

that can mask the singularity. We concentrate on the regres-
sions with three forward rates. The estimated coefficients are
plotted in Figure 2(a) and the tent-shaped finding of Cochranc
and Piazzesi (2002) is quite apparent.

Next, we examine whether any of the dynamic term struc-
ture models under consideration can meet the challenge of
replicating this unique tent-shaped phenomenon. Using the es-
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timated parameters of the four models, we simulate 50,000
monthly data and run the same regressions of cxcess bond
returns on forward rates. As seen in the lower panel of Ta-
ble 4, the 2-Tfactor[RS| model not only achieves the highest
predicting R? (20-36%), but also clearly closely mimics the
tent-shaped regression coefficients. On the other hand, the
2-factorfCIR] model produces a skewed and inverted tent
shape, and the 3-factorfAF] model produces a inverted tent
shape. Both models achieve R”’s around 10-20%. Interest-
ingly, even the 1-factor|RS] model can replicate the tent shape
to some degree, even though its R” is only about 19%. These
patterns arc quite apparent in Figure 2. These results suggest
that the prediction capability of forward rates for excess returns
may be explained by two or three lincar factors, whereas the
tent pattern of regression coefficients appears to be duc o the
regime-shifting nature of the yield curve.

The analysis of Duffee (2002) and Dai and Singleton (2002)
suggest that allowing more flexible specification of the risk pre-
mium parameters for the conditional Gaussian factor model can

dramatically improve its ability to match the predictability of

cxcess returns. To explore this argument, we have also esti-
mated the “preferred essentially affine Ap(3) model™ discussed
by Duffee (2002) with three Gaussian factors and cight market-
price-of-risk parameters (we call it the 3-factor|EEA] modcl).
The chi-squared test of overall specification is 29.278 with 9 de-
grees of freedom and a p value of .0006; hence the model is not
supported by the data. The estimation result suggests that the
3-factor] EA] model overshoots the excess returns predictabil-
ity. the R* range from 26% to 65% vis-a-vis 30% obscrved in
the data. More importantly, it cannot reproduce the tent shape
of the predictability regression cocflicients. Further, its perfor-
mance for cross-sectional pricing error is somewhat worse than
that of the three-factor affine model. Our diagnostics for this
model specification reveal that the implied conditional volatil-
ity and conditional correlations of yiclds do not match those in
the data. Given this result, for brevity we do not present very
detailed evidence on this specification.

3.5 Regime Indicator, Risk Premium, and
the Business Cycle

We now explore the cross-sectional implications of the term
structure models over the maturities that are not used in the
model estimation. We also look at the association between the
bond market implied regimes and the real business cycle. For
the 2-factor[CIR | and 3-factor[ AF] models, a standard method
is used to calculate the pricing errors. Because the yield curve
solution is linear in the factors, we first invert from two or
three basts yields to get the latent factors and then use the lin-
ear pricing solution to calculate the nonbasis yields. For the
[-factor[RS] and 2-factor[RS] models, the presumption that
agents in the cconomy know the current regime implies a strat-
egy to recover the regimes. Specifically, dates are classified into
regimes according to which of the two yield curves producces
the smallest pricing error. Under the null of correct specifica-
tion, the pricing error should be 0 given the true regime and the
population parameter values (for more details, sce Bansal and
Zhou 2002).
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Table 5. Average Absolute Pricing Error (basis points)

1-factorfRS]  2-factor[CIR]  2-factor[RS]  3-factor[AF]

Mean 45 44 27 31
Median 34 40 19 23
Standard 33 24 22 28
Minimum 5 5 3 1
Maximum 223 156 154 188

NOTE: There are eight maturities (1-, 3-, and 6-month; and 1-, 2-, 3-, 4-, and 5-year) for each
of 451 dates. The absolute pricing errors over 7 points for the 1-factor[RS] model; over 6 points
for the 2-factor[CIR] model; over 6 points for the 2-factor[RS] model and over 5 points for the
3-factor[AF] model. The summary statistics of the absolute pricing errors are calculated over the
451 dates for each of the 4 models.

Table 5 reports the time-series average of pricing errors
/Ty L, PE, () or other statistics from the cross-sectional av-
erage PE,(1) = 1 /N SN_ Vi(t, n) — Yy(t, n)|, where ¥,(2, n) is
the calculated yield and Y,(z, n) is the observed yield for ma-
turity n at time t (where the current state s is inferred from
minimizing the pricing errors of the two yield curves, as men-
tioned carlier). It is clear from the sample statistics that the
2-factor|RS] model has the smallest average pricing error and
also the smallest standard deviation in the pricing error. The
maximal pricing error associated with the 2-factor[RS] specifi-
cation is also the smallest. Further, on average the pricing er-
ror is only about 27 basis points for the annualized percentage
yields. The 3-factor| AF] specifications have average pricing er-
rors ol 31 basis points, which in an absolute sense is also quite
small. The 1-Factor[RS] and 2-factor[CIR] models achieve sim-
ilar pricing results as 44 to 45 basis points.

It has been well recognized that the slope of the yield curve
(i.e., spread) has the ability to predict future real GDP growth;
in particular, negative spreads tend to predict a recession (see,
c.g.. Harvey 1988; Estrella and Hardouvelis 1991). Figure 3
recreates this linkage between the monthly yicld spread, our
regime indicator for regime 0 (our low regime), and the Na-
tional Burcau of Economic Research (NBER) business cycles
recession indicator. Most of the time, it seems that the cconomy
is in regime 1. The total number of regime switches recovered
from the sample period is 44. The regime relates to the NBER
business cycles. Our low regime (regime 0) obtains during or
before recessions in the economy. In the data, the correlation
between NBER business cycle indicator and the yield spread
(5-year yield minus 6-month yield) is 15%. In general, the yield
curve becomes inverted (or flat) several months before the eco-
nomic growth becomes negative (or depressed). Our regime in-
dicator is mostly 0, as Figure 3 shows, when the yield curve
becomes inverted (or flat). The correlation between the model-
based regime indicator and the yield spread (5-year yield minus
6-month yield) is 24%; that is, our high regime (regime 1) co-
incides with a high yield spread and our low regime (regime 0)
largely coincides with a low yield spread. Therefore, as reported
by Bansal and Zhou (2002), the regime indicator has the power
to predict recessions. The correlation between the NBER busi-
ness cycle (NBER recession as regime 0 and NBER boom as
regime 1) and our regime indicator is .1117. In the context of
modeling the short interest rate, Ang and Bekaert (2002) also
documented the links between regime shifts and business cy-
cles.

Fama and Bliss (1987) attributed the time-varying risk pre-
mium in bonds to the business cycle. In particular, their argu-
ment is that the bond excess return is high when the economy
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Figure 3. Yield Spread, Regime Indicator, and Business Cycle. The thick line is the 5-year yield minus the 6-month yield (yield spread), the
shaded area is the NBER recession period, and the star is the indicator of our low regime (regime 0) from our preferred 2-factor[RS] model. The

high regime (regime 1) corresponds to all dates without the star.

is in recessions and low when it is in expansions. Figure 4(a)
shows that our regime 0 and negative ex-post excess returns
bear close relation; the correlation between our regime indica-
tor and ex-post bond excess returns is 21%. That is, our high
regime (regime 1) tends to coincide with high ex-post returns.
We also explore how the expected excess returns relate to the
regimes. Figure 4(b) plots the fitted expected return in the data
based on the excess return forward rate projection discussed
earlier. The correlation in the data between our regime indica-
tor and the expected excess return is 32%; that is, high risk pre-
mia and the high regime (regime 1) tend to go together. In this
sense our regimes can also be thought of as ranking on high and
low risk premia on bonds. Figure 4(c) plots the reprojected ex-
pected excess returns for bonds from our preferred 2-factor[RS]
model. The reprojected expected excess return for this model
duplicates the expected excess return patterns observed in the
data. Further, the reprojected expected excess return has a cor-
relation of 37% with our regime indicator. The overall evidence
indicates that our regime indicator tracks the time-varying risk
premium on the bond market. As discussed earlier, none of the
other models can replicate the Cochrane and Piazzesi (2002)
predictability regressions; consequently, none also cannot ac-
count for the expected risk premium dynamics plotted in Fig-
ure 4(b).

3.6 The Reprojected Conditional Volatility
and Correlation

As a final diagnostic, we assess the ability if the various mod-

els to match the shape and track the conditional distribution
and covariance characteristics of the data. Following Gallant

and Tauchen (1998), we compute the reprojected conditional
density of the two basis yiclds. Given the estimated nuil model
and the simulated output for yields, the reprojected conditional
density is obtained by reestimating the parameters of the SNP
density. Moments of interest, such as the conditional variances
and correlations implied by the model specification, can then
be computed. These conditional moments are simply functions
of the conditioning information used to estimate the reprojected
density. Given the conditioning information, the implications of
a given null model for any conditional moment of interest can
be evaluated on the observed data and compared to the condi-
tional moment impliced by the unrestricted SNP density.

Figure 5 plots the reprojected conditional density (evaluated
at the sample mean), for the different models under consid-
eration. The unrestricted 6-month yield SNP density has high
peak and narrow shoulders, and the unrestricted density for
the 5-year yield is skewed to the left and moderately peaked.
The reprojected densitics for the 3-factor| AF| model do cap-
ture the peakedness of the S-year yield but miss the peak
of the 6-month yicld and the skew of the S-year yicld. On
the other hand, the reprojected densities for the [-factor|RS]
and 2-factor{CIR] models capture the skewness of the 5-ycar
yield somewhat but largely miss the peak of both yiclds. The
2-factor|RS] regime-shifting model has greater success in cap-
turing the left skew of the S-year yield and the peak of both
yields.

Figure 6 displays the conditional volatility and cross-
correlation for the various model specifications as implied by
the reprojected densities. Note that in the data, the dynamics
of the conditional variance of the 6-month yield is quite differ-
ent from that of the 5-ycar yield. The range lor the conditional
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Figure 4. Excess Return, Regime Indicator, and the Business Cycle. The shaded area is the NBER recession period, and the star is the indicator
of the low regime (regime 0) from our preferred regime-shifting term structure model. The thick line represent the annual ex-post excess return (a),
the expected excess return based on projecting future ex-post excess returns on three forward rates (b), and the reprojected expected excess
return from our 2-factor[RS] model (c). All ex-post and expected excess returns are averages (across bonds) using the 2- to 5-year bonds.

volatility for the 6-month yield rate is much larger than for the
S-year yield—the high end being almost three timcs the lowest
for the 6-month yield and two times the lowest for the 5-year
yield. The short yield volatility is more persistent, whereas
the lTong yicld volatility seems more choppy. The [-factor[RS|
model does not reflect any time variations of short and long rate
volatilitics, although the levels of volatility are matched. The
2-Tactor| CIR] model has difficulty in matching the short rate
volatility and does somewhat better in matching the volatil-

ity of the 5-year yield. The 2-factor{RS] model is capable of

duplicating the projected volatility of the short rate extremely
well and that of the long yield volatility almost completely. The
3-factor| AF] model seems to capture the volatility of the short
rate much better than the 2-factor[ CIR | model; however, its ca-
pability to mimic the long rate volatility is diminished relative
to the 2-factor[ CIR ] model.

The rightmost plots of Figure 6 provide evidence regard-
ing the conditional correlation between the 6-month and 5-year
yields. The 2-tfactor|RS] model succeeds in capturing the wide

range of the correlation observed across these yields. The cor-
relation varies from 40% to 80%. Note that although the condi-
tional volatility increases during the volatile period of the early
1980s, the conditional correlation decreases, suggesting that the
volatilities of the two yields rise more rapidly relative to the
conditional covariance. The 1-factor|RS] model, with only one
linear factor, not surprisingly presents a nearly constant correla-
tion very close to unity. The 2-factor[CIR]} and the 3-factor[ AF]
specifications have difficulty capturing the conditional covari-
ance. However, the 3-factor[AF] specification seems doing a
considerably better job of capturing the conditional covariance
relative to the 2-factor[CIR] specification. The 2-factor[RS]
model comes quite close to capturing virtually all of the ob-
served dynamics of the conditional correlation between these
yields. The main message of this evidence is that our preferred
regime-shifting term structure model is quite successful in cap-
turing the conditional volatility and cross-correlation dynamics
of yields. In addition, it captures the size and nature of the pre-
dictability of bond returns.
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Figure 5. Reprojected Densities.
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Figure 6. Reprojected Volatilities and Correlations.
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4. CONCLUDING REMARKS

Business cycle movements between economic expansions
and recessions affect macroeconomic variables, financial mar-
kets, and, in particular, the term structure of interest rates. In
this article we have incorporated the well-documented feature
of regime shifts as given by Hamilton (1988) into the standard
term structure model such as that of Cox et al. (1985). We have
uncovered additional important new evidence on the empirical
success of regime-switching models beyond that reported by
Bansal and Zhou (2002).

The empirical work was conducted on nominal U.S. treasury
bill and bond yiclds from 1964 to 2001. For estimation and
specification tests of the various models, we used the EMM esti-
mation technique developed by Bansal et al. (1995) and Gallant
and Tauchen (1996). A two-factor regime-shifting model! is the
only specification that fits the data according to the usual chi-
squared test of the restrictions; other models, including the mul-
tifactor CIR and affine, arc rejected. Furthermore, the preferred
two-factor regime-shifting model matches the semiparametric
moments with acceptable #-ratio diagnostics. In terms of cross-
sectional implications, the preferred model achieves the small-
est pricing error among all of the specifications considered.

Regime shifting and the risk premium for holding bonds ap-
pear to be closely connected. We have shown that the main
channel that the regime-shifting model accommodates is a
time-varying “beta” with respect to risk factors. Our empirical
evidence indicates that of the considered models, only the
regime-shifting model can account for the size of the pre-
dictability (i.e., high R%’s) and the tent-shaped structure of re-
gression coefficients in the generalized expectations hypothesis
regressions of excess bond returns on forward rates (Cochrane
and Piazzesi 2002). It is also able to account for the condi-
tional volatility and conditional cross-correlation across yields.
We find that there is an intimate link between business cycles,
the slope of the yield curve, expected excess return of bonds,
and the regimes extracted from our term structure model.
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