Available online at www.sciencedirect.com

SCIENCE DIRECT?® GAMES and
@ Economic
ol Behavior
ELSEVIER Games and Economic Behavior 48 (2004) 223-248 —_—

www.elsevier.com/locate/geb
Cost monotonicity, consistency and
minimum cost spanning tree games
Bhaskar Dutt&*, Anirban Kar’
@ University of Warwick, Coventry CV4 7AL, UK
b Indian Statistical Institute, New Delhi 110 016, India
Received 3 July 2001
Available online 21 December 2003
Abstract

We propose a new cost allocation rule for minimum cost spanning tree games. The new rule is
a core selection and also satisfies cost monotonicity. We also give characterisation theorems for the
new rule as well as the much-studied Bird allocation. We show that the principal difference between
these two rules is in terms of their consistency properties.
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1. Introduction

There is a wide range of economic contexts in which “aggregate costs” have to be
allocated amongst individual agents or components who derive the benefits from a common
project. A firm has to allocate overhead costs amongst its different divisions. Regulatory
authorities have to set taxes or fees on individual users for a variety of services. Partners
in a joint venture must share costs (and benefits) of the joint venture. In many of these
examples, there is no external force such as the market, which determines the allocation
of costs. Thus, the final allocation of costsliscided either by mutl agreement or by an
“arbitrator” on the basis of some notion faiirness.
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A central problem of cooperative game theory is how to divide the benefits of
cooperation amongst individual players or agents. Since there is an obvious analogy
between the division of costs and that of benefits, the tools of cooperative game theory have
proved very useful in the analysis of cost allocation problémdsich of this literature has
focused on “general” cost allocation problems, so that the ensosiggame is identical
to that of a typical game in characteristic function form. This has facilitated the search
for “appropriate” cost allocation rules considerably given the corresponding results in
cooperative game theory.

The purpose of this paper is the analysis bda@ation rules in a special class of cost
allocation problems. The common feature of these problems is that a group of users have
to be connected to a single supplier of some service. For instance, several towns may draw
power from a common power plant, and henceehtd share the cost of the distribution
network. There is a non-negative cost of connecting each pair of users (towns) as well
as a cost of connecting each user (town) to the common supplier (power plant). A cost
game arises because cooperation reduggeegate costs—it may be cheaper for town A
to construct a link to town B which is “nearer” to the power plant, rather than build a
separate link to the plant. Clearly, an efficient network must treea which connects all
users to the common supplier. That is why these games have been lahiglledm cost
spanning tree games.

Notice that in the example mentioned above, it makes sense for town B to demand
some compensation from A in order to let A use its own link to the power plant. But, how
much should A agree to pay? This is where both strategic issues as well as considerations
of fairness come into play. Of course, these issues are presamyisurplus-sharing
or cost allocation problem. What is special in our context is that the structure of the
problem implies that thdomain of the allocation rule will be smaller than that in a more
general cost problem. This smaller domain raises the possibility of constructing allocation
rules satisfying “nice” properties which cannot always be done in general problems. For
instance, it is known that theore of a minimum cost spanning tree game is always non-
empty?

Much of the literature on minimum cost spanning tree games has focuségboithmic
issues’ In contrast, the derivation of attractive cost allocation rules or the analysis of
axiomatic properties of different rulesib received correspondingly little attentibihis
provides the main motivation for this paper. We show that the allocation rule proposed by
Bird (1976), which always selects an allocation in the core of the game, does not satisfy
cost monotonicity. Cost monotonicity is an extremely attractive property, and requires that
the cost allocated to agehtloes not increase if the cost of a link involvingioes down,
nothing else changing. Notice that if a rule does not satisfy cost monotonicity, then it may
not provide agents with the appropriate incentives to reduce the costs of constructing links.

The cost allocation rule, which coincides with the Shapley value of the cost game,
satisfies cost monotonicity. However, the Shapley value is unlikely to be used in these

1 Moulin (1999) and Young (1994) are excellent surveys of this literature.

2 see, for instance, Bird (1976), Granot and Huberman (1984).

3 See for instance Granot and Granot (1993),r@tand Huberman (1981), Graham and Hell (1985).
4 Exceptions are Feltkamp (1995), Kar (2002). Searkéy (1995) for a survey of this literature.
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contexts because it may not lie in the coreisTimplies that some group of agents may
well find it beneficial to construct their own network if the Shapley value is used to
allocate costs. We show that cost monotonicity and the core are not mutually exthsive
constructing a new rule, which satisfies cost monotonicity and also selects an allocation in
the core of the game.

We then go on to provide axiomatic characterisations of the Bird rule as well as the new
rule constructed by us. An important type of axiom used by us is closely linked te-the
duced game properties which have been extensively usedtihe axiomatic characterisation
of solutions in cooperative game theSrfhese are consistency conditions, which place
restrictions on how solutions of different but related games defined on different player sets
behave. We show that the Bird rule and the new allocation rule satisfy different consistency
conditions.

The plan of this paper is the following. In Section 2, we define the basic structure of
minimum cost spanning tree games. The main purpose of Section 3 is the construction
of the new rule as well as the proof that it satisfies cost monotonicity and core selection.
Section 4 contains the characterisation results. Appendix A contains the proofs of some
lemmas.

2. Theframework

Let A =({1,2,...} be the set of all possible agents. We are interestegtaphs or
networks where the nodes are elements of a Aeu {0}, whereN Cc A/, and O is a
distinguished node which we will refer to as teaurce or root. A typical graph will be
denotedgy .

Henceforth, for any seW c A/, we will useN* to denote the seV U {0}.

Two nodesi and j € N* are said to be&onnected in graphgy if 3(i1i2), (i2i3), ...,
(in—1iy) such that(iziz+1) € gy, 1<k <n-—1, andiy =i,i, = j. A graphgy is called
connected over NV if i, j are connected igy for all i, j € N*. The set of connected
graphs oveiN* is denoted by y.

Consider anyN C NV, where #V = n. A cost matrix C = (¢;j) represents the cost of
direct connection between any pair of nodes. Thatsjs the cost of directly connecting
any pairi, j € Nt. We assume that each; > 0 wheneveri # j. We also adopt the
convention that for eache N*, ¢;; = 0. So, each cost matrix ove&¥ ™ is nonnegative,
symmetric and of ordet + 1. In this paper we will often use the term matrix instead of
cost matrix. The set of all matrices fof is denoted byCy. However, we will typically
drop the subscrip/ whenever there is no cause for confusion about the set of nodes.

Consider anyC € Cy. A minimum cost spanning tree (m.c.s.t.) overN™ satisfies
gN =argmin,e >~ i)e, ¢ij- Note thatan m.c.s.t. need not be unique. Clearly a minimum

5 This is where the small domain comes in useful. Yohg94) shows that in theontext of transferable
utility games, there is no solution concept which picksadlocation in the core of the game when the latter is
nonempty and also satisfies a property which is analogous to cost monotonicity.

6 See Peleg (1986), Thomson (1998).
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cost spanning network must be a tree. Otherwise, we can delete an extra edge and still
obtain a connected graph at a lower cost.
An m.c.s.t. corresponding 16 € Cy will typically be denoted by y (C).

Example 1. Consider a set of three rural communities, B, C}, which have to decide
whether to build a system of irrigation channels to an existing dam, which is the source.
Each community has to bepnnected to the dam in order to draw water from the dam.
However, some connection(s) could be indirect. For instance, commdnitguld be
connected directly to the dam, while and C are connected ta, and hence indirectly
to the source.

There is a cost of building a channel connecting each pair of communities, as well
as a channel connecting each communitectiy to the dam. Suppose, these costs are
represented by the matrix

0 2 41
2 01 3
4 1 0 2
1 3 20

The minimum cost of building the system of irrigation channels will be 4 units. Our
object of interest in this paper is to see how the total cost of 4 units is to be distributed
amongstd, B andC.

C =

This provides the motivation for the next definition.

Definition 1. A cost allocation rule (or simply arule) is a family of functions{y } yc A7
such thaty ™ : Cy — %Y satisfying)", .y ¥V (C) = 31y conco) Cij forall C € Cy.

We will drop the superscripV for the rest of the paper.

So, given any set of node@é and any matrixC of order(|N| + 1), a rule specifies the
costs attributed to agents M. Note that the source 0 is not antive player, and hence
does not bear any part of the cost.

A rule can be generated by aaygle-valued game-theoretic solution of a transferable
utility game. Thus, consider the transferable utility game generated by considering the
aggregate cost of a minimum cost spanning tree for each coalitonv. GivenC and
S C N, let Cs be the matrix restricted t67. Then, consider an m.c.sds(Cs) overST,
and the corresponding minimum cost of connectirg the source. Let this cost be denoted
by cs. For eachv c NV, this defines @ost game (N, ¢) where for eacts € N, ¢(S) = cs.
Thatis,c is the cost function, and is analogous to a TU game. Theah ¥ a single-valued
solution,® (N, ¢) can be viewed as the rule corresponding to the matrix which generates
the cost functior.”

One particularly important game-theorgtimperty, which will be used subsequently is
that of thecore. If a rule does not always pick an element in the core of the game, then

7 See Kar (2002) for an axiomatic charactetima of the Shapley value in m.c.s.t. games.
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some subset a¥ will find it profitable to break upV and construct its own minimum cost
tree. This motivates the following definition.

Definition 2. A rule ¢ is a core selection if for all N € N and for all C € Cy,
Y ies @i (C) < c(S), wherec(S) is the cost of some m.c.s.t. f6f VS C N.

However, cost allocation rules can also be defined without appealing to the underlying
cost game. For instance, this was the procedure followed by Bird (1976). In order to
describe his procedure, we need some more notation.

The (unique)path from i to j in treeg, is a setU(i, j, g) = {i1,i2,...,ikx}, where
each pair(iy_1ix) € g, andiz, io, ..., ix are all distinct agents withy =i, ix = j. The
predecessor set of an agent in g is defined asP(i,g) = {k |k #i, k€ U(0,i,g)}. The
immediate predecessor of agenti, denoted byx (i), is the agent who comes immediately
beforei, that is,a(i) € P(i, g) andk € P(i, g) implies eithetk = a(i) ork € P(«(i), g).B
The followers of agenti, are those agents who come immediately aftef (i) = {J |
a(j) =i}

Bird's method is defined with respect to specific tree. Letgy be some m.c.s.t.
corresponding to the matri€. Then,

Bi(C) =ciqiy Vi€N.

So, in the Bird allocation, each node pay® thost of connecting to its immediate
predecessor in the appropriate m.c.s.t.

Notice that this does not define a ruleifgives rise to more than one m.c.s.t. However,
whenC does not induce a unigue m.c.s.t., one can still use Bird’s method on each m.c.s.t.
derived fromC and then take some convex combination of the allocations corresponding to
each m.c.s.t. as the rule. In general, the properties of the resulting rule will not be identical
to those of the rule given by Bird’s method on matrices which induce unique m.c.s.t.

In Section 4, we will use two domain restrictions on the set of permissible matrices.
These are defined below.

Definition 3. 1 = {C € C| C induces anique m.c.s.tYN C N}.
Definition 4. C? = {C € C* | no two edges of the unique m.c.s.t. have the same cost}.

Notice if C is notinC?, then even a “small” perturbation 6f produces a matrix with the
property that no two edges have the same cost. Of course, such a matrix mu€b8dn
even the stronger domain restriction is relatively mild, and the permissible sets of matrices
are large.

8 Note that sincg is a tree, the immediate predecessor must be unique.
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3. Cost monotonicity

The Bird allocation is an attractive rule because it is a core selection. In addition, it is
easy to compute. However, it fails to satigfyst monotonicity.

Definition 5. Fix N C NV. Leti,j € N*, andC,C’ € Cy be such thaty = ¢, for
all (k) # (ij) and ¢;; > clfj. Then, the ruley satisfiescost monotonicity if for all

meNN{i,j}, Ym(C) = Ym(C).

Cost monotonicity is an extremely appealing property. The property applies to two
matrices which differ only in the cost of connecting the paj, clfj being lower thare;;.
Then, cost monotonicity requires that no agent in the @ajt} be charged more when the
matrix changes front" to C’.

Despite its intuitive appeal, cost monotonicity has a lot of Bifédwe following example
shows that the Bird rule does not satisfy cost monotonicity.

Example2. Let N = {1, 2}. The two matrices are specified as follows:

(i) cor=4,c02=45,c12=3;
(i) chy =4, ch,=35,c),=3.

Then, B1(C) = 4, B2(C) = 3, while B1(C") = 3, B2(C’) = 3.5. So, 2 is charged more
when the matrix isC" althoughcg, < co2 and the costs of edges involving 1 remain the
same.

The rule corresponding to the Shapley value of the cost game does satisfy cost
monotonicity. However, it does not always select an outcome which is in the core of the cost
game. Our main purpose in this section is to define a new rule which will be a core selection
and satisfy cost monotonicity. We are ablatwthis despite the impossibility result due to
Young because of the special structure ofiminm cost spanning tree games—these are a
strict subset of the class dblanced games. Hence, monotonicity in the context of m.c.s.t.
games is a weaker restriction.

We describe an algorithm whose outcome will be the cost allocation prescribed by the
new rule. Our rule is defied for all matrices irC. However, in order to economise on
notation, we describe the algorithm for a matrixdf We then indicate how to construct
the rule for all matrices.

Fix someN C N, and choose some matrix e C]ZV. Also, for anyA C N, defineA, as
the complementoft in N*. ThatisA, = N1\ A.

The algorithm proceeds as follows.

LetA°={0}, g°=¢,:°=0.

9 In fact, Young (1994) shows that an analogous propierthe context of TU games cannot be satisfied by
any solution which selects a core outcome in balanced games.
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Step 1: Choose the ordered pair'st) such that

(a*b) = argmin ¢;.
(i,j)€A0x AD

Define
tt=maxi® c,,n), At=A%U Y}, gt=gu{(a’ph)).
Sep k: Define the ordered pair
(@)= argmin  ¢;,  AF=AMTUr), =gt U{(dPN)),
(i, j)e Ak—1x Ak—1
t* = max(** 1, c ).

Also,
Y1 (C) = min(tf =t e ). 1)
The algorithm terminates at step/#= n. Then,
Y (C) =1". (2)

The new ruley* is described by Egs. (1)—(2).

At any stepk, AK~1 is the set of nodes which have already been connected to the
source 0. Then, a new edge is constructed at this step by choositgwst-cost edge
between a node im*~1 and nodes im*~1. The cost allocation ob*~* is decided at
stepk. Equation (1) shows thdt—1 pays the minimum of¥~1, which is themaximum
cost amongst all edges which have been constructed in previous stepg;anthe edge
being constructed in stefp Finally, Eq. (2) shows thai”, the last node to be connected,
pays the maximum codf.

Remark 1. The algorithm has been described for matrice§4n Suppose tha€ ¢ C2.

Then, the algorithm is not well-defined because at somekstepo distinct edgega*b*)

and (a*b*) may minimise the cost of connecting nodes4fi-! and A*~1. But, there is

an easy way to extend the algorithm to deal with matrices nat?inLet o be a strict
ordering overN. Then,o can be used as a tie-breaking rule—for instance, chadgé)

if b is ranked oveb* according too. Any such tie-breaking rule makes the algorithm
well-defined. Now, let¥ be the set of all strict orderings ovar. Then, the eventual cost
allocation is obtained by taking the simple average of the “component” cost allocations
obtained for each ordering € X'. That is, for anyo € X, let ¥*(C) denote the cost
allocation obtained from the algorithm whernis used as the tie-baking rule. Then,

* _ 1 *
VIO == D s (O, (3

oeX

We illustrate this procedure in Example 5 below.

10 From Prim (1957), it follows thag” is also the m.c.s.t. corresponding@o
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Remark 2. Notice thaty* only depends on the m.c.s.t. corresponding to any matrix.
This property oftree invariance adds to the computational simplicity of the rule, and
distinguishes it from rules such as the Shapley value and nucleolus.

We now construct a few examples to illustrate the algorithm.
Example 3. Suppose? is such that the m.c.s.t. is unique and isre. That is, each node

has at most one follower. Then the nodes can be labefed;, ao, . . ., a,, whereag =0,
#N = n, with the predecessor set@f, P(ax, g) = {0, as, ..., ax—1}. Then,

l .
Vk<n, ¥u (cH) = mln(orgiﬁ Cararsy cdkak+l) 4)
and
1 .
w;lkn (C ) = 022; (’ataH—l' (5)

Example4. Let N = {1, 2, 3,4} and

0 4555
4 02 15
c?’=|5 2 0 5 5
5150 3
5 55 3 0

There is only one m.c.s.t. @f?.

Sep 1: We havea?b?) = (01), 1 = co1 =4, A1 ={0, 1}.

Step 2: Next, (a?h?) = (13), 5 (C?) = min(tl, c13) = 1, 12 = max(tl, c13) = 4, A% =
(0,1, 3}.

Step 3: We now havéa3h3) = (12), ¥3(C?) = min(t?, c12) = 2,13 = max(t?, c12) = 4,
A3=1{0,1,2,3}.

Step 4: Next, (a*h®) = (34), ¥3(C?) = min(t3, cza) = 3, t* = max(t3, cas) = 4, A% =
{0,1,2,3,4}.

SinceA*= N, ¥} (C?) = t* = 4, and the algorithm is terminated.

So,¥*(C?) = (1, 3,2, 4). This example shows that it is not necessary for a node to be
assigned the cost of its preceding or following edge. Here 2 pays the cost of the3drge
while 3 pays the cost of the edg#2).11

2 1 3 4
0
Fig. 1.

11 see Fig. 1 for the m.c.s.t. corresponding®.
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0 1 3 0 1 3
2 2

Fig. 2.

The next example involves a matrix which has more than one m.c.s.t. with edges which
cost the same.

Exampleb5. Let N = {1, 2,3} and

4 4
s (4 0 2
“=la 2 o
5 2 5

C® has two m.c.s.tgy = {(01), (12), (13)} and g% = {(02), (12), (13)}. The edgeg12)
and(13) have the same co&t.

Suppose the algorithm is first appliedgg. Then, we haveé! = 1. In step 242 =1,
but b2 can be either 2 or 3. Taking eadf turn, we get the vectors! = (2,2, 4) and
x2=(2,4,2).

Now, conside[g]lv, which is a line. So, as we have described in Example 3, the resulting
cost allocation isc = (2, 2, 4).

The algorithm will “generate’y, instead ofgy for all o € ¥ which ranks 2 over 1.
Hence, the “weight” attached tp}v is half. Similarly, the weight attached to' and x?
must be one-sixth and one-third respectively.

Hencey*(C3) = (2, 8/3, 10/3).

5
2
5
0

We now show that/* is a core selection and also satisfoest monotonicity.
Theorem 1. Therule v * satisfies cost monotonicityand is a core selection.

Proof. We first show that/* satisfies cost monotonicity.

Fix any N c V. We give our proof for matrices i, and then indicate how the proof
can be extended to cover all matrices. k&tC e C? be such that for some j € N,
cij > ¢ij, andcy; = ¢y for all other pairs(kl). We need to show thak; (C) > 1//;‘(5) for
ke NN, j}.

In describing the algorithm which is used in constructjrig we fixed a specific matrix,
and so did not have to specify the dependenca’of’, a*, b*, etc., on the matrix. But,
now we need to distinguish between these entities for the two matfiees!C. We adopt
the following notation in the rest of the proof of the theorem. W&t ¥, o, b*, gy, etc.,
refer to the matrixC, while A%, %, a*, b*, gy, etc., will denote the entities corresponding
to C.

12 Figure 2 displays minimum cost spanning tree<'af
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Case 1. (ij) ¢ gv. Then,gy = gn. Since the cost of all edges i remain the same,
YH(C)=y;(C)forallkeN.

Case 2. (ij) € gn. Without loss of generality, let be the immediate predecessor jof
in gn. Since the source never pays anything, we only consider the case iikeret the
source.

Supposei = b1, As the cost of all other edges remain the samk;1 = A%—1
and*=1 = %=1 Now, y*(C) = min@* =1, ¢,i50) and ¢ (C) = min(t*~1, ¢ i,0). Since
Cakpk < Carphs Y (C) <Y (C).

We now show that/f;‘(f) <YIO). Letj = b! andj = b™. Note thatl > m, and that
AmcC Al andr! > 1.

Now, ¥5(C) = min(i"™, &zm+ajm+1), While ¢#(C) = min(z!, ¢ i+1,+1). Sincer! > 1™,
we only need to show that+1zm+1 < Cyir1pit-

Case 2(a). Suppose:' Tt € A™. Sinceb! ™t € Nt \ A™, Comrapmer < Eqrrapitt < Cuirpist.

Case 2(b). Suppose/'t1 ¢ A™. Then,a' ™1 £ j. Also,a't! € A!, and so

Cyl+1pi+1 2= Cylpl - (6)
We need to consider two sub-cases.

Case 2(bi). a’ € AI71\ A"~L. Then, sinceA’ = AI71 U {j} and A" = A"~ U {j},
al e AT\ A™. i i

Now sincej € A” andal ¢ A™, Camiipm+l < Cjgl < Cjgt = Cqup. Using Eq. (6),
Col+1pl+l 2 Calpl 2 E&m+1§m+l-

Case 2(bii). a! € A"~1 = A"~ Then,c i, = campm sincem <.

Also, A" € Al and a/t1 € Al \ A™ imply that #4" < #A!. That is,! > m. So,
b" # j =b'. This impliesb™ ¢ (A"~ U {j}) = A™.

Now, a™ € A" 1 = A"~1 S0,a™ € A™. Buta™ € A™ andb™ ¢ A™ together imply
thatcmripmi1 < Campm < cqmpm .

So, using Eq. (B m+1pm+1 < Campm K Colpl K Cylipil.

Hence* satisfies cost monotonicity

We now show that for allC € C, ¥*(C) is an element in the core of the cost game
corresponding t@.

Again, we present the proof for afye C? in order to avoid notational complicatio?$.
We want to show thatforall C N, ) ;¢ ¥*(C) < c(9).

Without loss of generality, assume that foriadt N, ' =i and denote ., = c*.

13 SupposeC ¢ C2. What we have shown above is that the outcome of the algoritheadébrtie-breaking rule
satisfies cost monotonicity. Hence, the average must also satisfy cost monotonicity.

14 Suppose instead that ¢ C2. Then, our subsequent proof shows that the outcome of the algorithm is in the
core foreach o € X. Since the core is a convex set, the average (thdt'i must be in the core if each’ is in
the core.
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Clam1.1f §={1,2,..., K} whereK <#N,then) ;¢ ¥ (C) <c(S).

Proof of Claim 1. Clearly,g = Ule{a"k} is a connected graph ov&rU {0}. Also, g is
in fact the m.c.s.t. oves.
S0,¢(8) = YK, ¢k, Also,

K+1 K
Y YO => = max F<) F=c). O
: 1<k<K+1
ieS k=1 k=1

Hence, a blocking coalition cannot corisif an initial set of integers, given our
assumption that* = k forall k € N.
Now, let S be a largest blocking coalition. That is,

(i) Yies ¥ (C) > c(S).
(i) If SCT,then) ;. ¥/ (C) <c(T).

There are two possible cases.

Casel.1¢ S.LetK =minjcs j. Considerl = {1,..., K — 1}. We will show thatSU T
is also a blocking coalition, contradicting the descriptiorsoNow,

D VHO=) YO+ W (C)>c(S)+Zc — max ¢t

1<k<K
ieTUS ieS ieT

= c(S) + ch — €0,

k=1
where(0s) € g5, the m.c.s.t. ofS. Note that the last inequality follows from the fact that
k<o forallke(l,...,K}.

Sinceg = (r_, a*b*) U (g5 \ {(0s)}) is a connected graph oveF U S U {0}),

K
c(S) + ch —cos = c(SUT).
k=1

Hence,
> Y C) > e(SUT),
ieSUT
establishing the contradiction th&it) T is a blocking coalition.

Case 2. 1 € S. From the claim,S is not an initial segment of the integers. So, we can
partition S into {S1, ..., Sk}, where eacls; consists of consecutive integers, and S,

J € Skq1 imply thati + 1 < j. Assumem = maX;es, j andn = min;cgs, j. Note that
n>m+1. DefineT ={m+1,...,n—1}. We will show thatS U T is a blocking coalition,
contradicting the assumption th&is a largest blocking coalition.
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D UTO =) YO+ Y YHO)

ieSUT ieS ieT

>c(®)+ Y YO =Y YO

ieSLUT ieSy

n m—+1
=c(S) + ¢ — maxc ) — E ¢ — max ¢
1<i<n vy 1<i<m+1
1=

i=1
n
=c(S) + ¢+ max ¢ — maxct
Pt 1<i<m+1 1<i<n

n
>c(S i — max ¢'.
( )+Z ‘ 1<i<nc
i=m+1
Since g5 is a connected graph ovef", there iss; € S\ 1 and sy € Sf such that

(s152) € gs. Moreovercy,,, > Max<i<a ¢'. Noting that_J; _,, . 1 {(a*6¥)} Ulgs \ {(s152)}]
is a connected graph ov8tJ T U {0}, it follows that

S UHO) =)+ Y ¢ =gy 2 e(SUT).

ieSUT i=m+1
So,S U T is a blocking coalition, establishing the desired contradiction.

This concludes the proof of the theorent

4, Characterisation theorems

In this section, we present characterisations of the allocation fitileand B.1° These
characterisation theorems will be proved for the restricted donddifer B andC? for *.
Examples 8 and 9 explain why we choose these domain restrictions.

We first describe the axioms used in the characterisation.

Efficiency (EF): 3" cn i (C) = X ij)eqn(c) Cii -

This axiom ensures that the agents together pay exactly the cost of the efficient network.
Before moving on to our next axiom, we introduce the concept aikieme point. Let

C € Cy be such that the m.c.sgx (C) is unique. Then; € N is called anextreme point

of gn (C) (or equivalently ofC), if i has no follower ingy (C).

Extreme point monotonicity (EPM): Let C € C%, andi be an extreme point of . Let C

be the restriction of over the setv* \ {i}. A rule satisfiesextreme point monotonicity if
Yk (C) = Y (C) Vk € N\ {i}.

15 see Feltkamp (1995) for an alternative characterisatioB. of
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Supposé is an extreme point afy (C). Note that is of no use to the rest of the network
since no node is connected to the source thraugxtreme point monotonicity essentially
states that no “existing” nodewill agree to pay a higher cost in order to includm the
network.

The next two axioms areonsistency properties, analogous to reduced game properties
introduced by Davis and Maschler (1965) and Hart and Mas-Colell (1989).

Consider anyC with a unique m.c.s.tgx (C), and suppose thai0) € gy (C). Let x;
be the cost allocation ‘assigned’ toSupposé ‘leaves’ the scene (or stops bargaining for
a different cost allocation), but other nodes are allowed to connect through it. Then, the
effectivereduced matrix changes for the remaining nodes. We can think of two alternative
ways in which the others can use ndde

(i) the others can use nod®nly to connect to the source;
(i) nodei can be used more widely; that is, noflean connect to nodethroughi.

In Case (i), the connection costs &t \ {i} are described by the following equations:

forall j #£i, cjo=min(cjo,cji + cio—xi), 7
it {j,k}N{i,0}=0, then cj=cj. (8)

Equation (7) captures the notion that nofle cost of connecting to the source is the
cheaper of two options—the first option being the original one of connecting directly to
the source, while the second is the indirect one of connecting throughi nbdthe latter
case, the cost borne byis adjusted for the fact thatpaysx;. Equation (8) captures the
notion that nodé can only be used to connect to the source.

Let C3' represent the reduced matrix derived through Egs. (7)—(8).

Consider now Case (ii).

Forallj, ke Nt \{i}, ¢jx=min(cjk,cji + cxi —xi)- 9)

Equation (9) captures the notion thatan use to connect to any other node wherek
is not necessarily the source.

Let C}Cr represent the reduced matrix derived through Eg. (9).

We can now define the two consistency conditions.

Source consistency (SR): LetC e CL, and(0i) € gy (C). Then, the rule) satisfiessource
consistency if i (Cy! () = ¥ (C) forall k € N\ {i} wheneverCy ., C,%,\l..
Tree consistency (TR): Let C € €2, and (0i) € gn(C). Then, the ruley satisfiestree
consistency if ka(Cfpri () =¥ (C) forallk e N \ {i} wheneveIC}prl_ © € C,Z\,\l..

The two consistency conditions require that the cost allocated to any agent be the same
on the original and reduced matrix. This ensures that once an agent connected to the source

18 Thomson (1998) contains an excellent discussion ofistery properties in various contexts. Granot and
Maschler (1998) also use a reduced game property for aafastated (but different) cost allocation problems.
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agrees to a particular cost allocation and then subsequently allows other agents to use its
location for possible connections, the remaining agents do not have any incentive to reopen
the debate about what is an appropriate allocation of costs.

The following lemmas will be used in the proofs of Theorems 2 and 3. The proofs of
these lemmas are given in Appendix A.

Lemmal.Let C € Cy,andi € N. If cix = Miney+\ i) cir, then (ik) € g (C).

Lemma 2. Let C € C2 and (01) € gy (C). Let y1(C) = Mingcy+ (1 ck. Then cgl(c) €
2
Chvay-

Lemma 3. Let C € Cy, (10) € gn (C). Suppose y1(C) = co1. Then C3' . € c},\{l}.

Lemma 4. Suppose ¢ satisfies TR, EPM and EF. Let C e C2. If (i0) € gn(C), then
1//,' (C) > minkeN+\{,-} Cik-

Lemma 5. Suppose ¢ satisfies SR, EPMand EF. Let C e C,. If (i0) € gn(C), then
Vi (C) = MiMgey+\ (i) Cik-

We now present a characterisationypf in terms oftree consistency, efficiency and
extreme point monotonicity.

Theorem 2. Over thedomain C?, arule y satisfies TR, EFand EPMif and only if ¢ = v*.

Proof. First, we prove thaty* satisfies all the three axioms.

LetC e C2.

Efficiency follows trivially from the algorithm which defines the allocation.

Next, we show that/* satisfies TR.

Let (10) = argmin,c cxo. The algorithm yield$! =1 andy; (C) = min(cio, ¢,2;2).
There are two possible choicesd.

Case 1. a? = 1. Then, we gety,2 = Minken (1) ck. Thereforeys (C) = min(cio, c1y2) =
mink€N+\{1} Clk-

Case2. 42 =0. Then,cy2g < cu, Yk € N\ {1}. Sincecio < ¢,2p, We conclude); (C) =
min(C]_O, CbZO) =C10= minkeN+\{1} Clk-

So, in either case, 1 pays its minimum cost.

Let ¥} (C) = x1 = MiNey+\(yycx = cu+. Denoting CY by C, we know from
Lemma 2, thaC e C2. Hence, the algorithm is well defined ¢h

Leta*, b*, i*, etc., denote the relevant variables of the algorithm correspondi@ig to

Claim. Vi € N\ {1}, ¥}(C) = ¢*(C). Thatis,y* satisfiedree consistency.
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Proof of the claim. From the proof of Lemma 2,

(i) cij=cij V(ij) egn(C) sti, j#1,
(II) Ek*j =cC1j fij eNTt \ {k*} s.t.(1)) € gn (C).

Also,
g (C) ={Gj) 1 (j) e gn(CO)if i, j # Land(ij) = (k*]) if (1) € gn (O)}.

Let b2 = . Eitherk* = 0 or k* =i. In either casefg < coj for j ¢ {0,1,i}. Hence,
bl=i.

Now, 12 = max(c,1p1, €,252) = Max(c10, ¢,2;) = Coi = 1

Also, a® € {0, 1, i}, while b3 € {0, 1,i}.. If a® € {0, i}, thena? = a3. If a3 =1, then
a? = k*. In all casesh® = b2, andc 3,3 = ¢;252. SO,

YH(C) = min(r?, ¢ 3,8) = min(i, E5252) = ¥ (C). (10)

The claim is established fofb3, ..., b"} by using the structure ofy\(1;(C), the
definition of C given above, and the following induction hypothesis. The details are left to
the reader. O

Foralli=2,...,k—1,

(I) bi— -1 bl
(iiy 7i-t=¢,
(i) a~t=da'ifa’ #1,anda’ "t =k*if o’ = 1.

We now have to show that* satisfies EPM.

Leti € N be an extreme point ¢fy (C), andC be the restriction o€ over N \ {i}. Of
courseC € C2.

In order to differentiate between the algorithms@rand C, we denote the outcomes
corresponding to the latter @, b%, 7%, etc.

Supposé* = i. Clearly, the algorithm will produce the same outcomes till gtep 1),
and SOl/f;f(C)zt/fj(ﬁ)for all j e {(b,...,0%2}, andrF—1 = 751,

Now, we calculatey (C) where j = b*=1. As i is an extreme point ogy, and
(a*i) € gn, akTt #£i. Also, AF = A*"1 U {i}. Hence,a*t1 € AF=1. This impliesc,; <
c et Buti ¢ AK—L Hence(@*hk) = (a*t1b*+1). Thus,

Yr(C) = mm( 71 c) S mIn(F* L, i) = v (C). (12)

Also, 1% = max(t* =1, c prapein) = maxtk =L, e u;, cqeiyirn) = t+1 The algorithm orC
determines the cost aIIocatlon foin step(k +1). Sincei is an extreme point of v, i # a*
for anys. Hence, the choice af/ andb’ must be the same i@l andC for j >k + 1. So,
forall je{k+1,....#N},a/ =a/~1, b/ = b/~ 1/ <i/~1. Hence,

Yy (C) =min(t/, ¢ aapin) <mIn(# =Y ¢ 550) = v 4 (C), (12)

and we can conclude thgt* satisfiesextreme point monotonicity.
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Next, we will prove that onlyne rule overC? satisfies all three axioms. Lét be a rule

satisfying all the three axins. We will show by induction on the cardinality of the set of

nodes that/ is unique.
Let us start by showing that the result is true &l = 2. There are several cases.

Case 1. c12 > c10, c20. From Lemma 4yr1(C) = ci0, ¥2(C) = c20. By EF, ¥1(C) +
Y2(C) = c10+ c20. Thusy1(C) = c10, andyr2(C) = c20. S0, the allocation is unique.

Case2. c20 > c12 > c10. Introduce a third agent 3 and cosig < c13 < min(csz, ¢3p). Let
the restriction ofC on {1, 2}* coincide withC. Hence,g(1,2,3; = {(01), (12), (13)}. Let
Y (C)=x.FromLemma4x1 > c10= c10.

Denote the reduced matr'&f{l as C. Now, o2 = min(Go1 + ¢12 — X1, ¢02) = o1 +
C12 — x1. Similarly, ¢23 = min(c13 + ¢12 — X1, ¢23). Noting thatxy > ¢19, ¢23 > ¢12 and
¢13 > C10, We conclude that

Analogouslyfogf col+C13— X1 < 623/.\
Hence,g2.3;(C) = {(02), (03)}. So,C € C2. Using TR,

¥2(C) = y2(C), ¥3(C) = y3(C). (13)
From Case 1 above,
¥2(C) = Gor + &12 — i1, ¥3(C) = o1+ ¢13 — F1. (14)

From (13) and (14),

v2(C) + 103(5) =¢C01+C12— X1+ Co1+C13— X1, Or
X1+ 1ﬁZ((_j) + 1#3(5) = o1+ c12+ c13+ (Co1 — X1).
But, from EF,%1+2(C) +¥:3(C ) = Go1+ 12+ ¢13. S0,81 = o1. S0,¥2(C) = 92(C) =
C12=c12.
By EPM, x1 < ¥1(C), andy2(C ) < ¥2(C). Using EF, it follows that)1 (C) = co1 and
¥2(C) = c12. Hencey) is unique.
The case10 > c12 > €20 is similar.

Case 3. co0 > c10 > c12.

We again introduce a third agent (say 3). Consider the matrizoinciding withC on
{1, 2}F, and such that

(i) ¢ca2> c13> 20,
(i) ¢30> c10+ C13-

Then,C € C? since it has the unique m.c.sgy (C) = {(01), (12), (13)}, where no two
edges have the same cost.



B. Dutta, A. Kar / Games and Economic Behavior 48 (2004) 223-248 239

Note that 3 is an extreme point of the m.c.s.t. correspondigg tdsing EPM, we get

Y1(C) = 1ﬁl(a), Y2(C) = 1//2(5)- (15)
Consider the reduced matix’ . on{2, 3}. DenoteC" _ = C for ease of notation.
¥1(C) ¥1(C)

Sincey1(C) > ¢12 from Lemma 4, it follows thafi 4 ¢10 — ¥1(C) < ¢10 < 20, and
c12+c13— ¥1(C) < c13 < c23. Hence,

éo0=7c12+ 10— ¥1(C), éo3=c12+ 13— ¥1(C),
¢30= 13+ c10— ¥1(C). (16)
Note that

c12+ 10— ¥1(C) < 12+ ¢13— ¥1(C) < 1o+ c13— ¥1(C).

Henceg(23(C) = {(02), (23)}. _ ~
A_pplying Case 2;(//2\((/“) = 82_0 = Elzi— c10 — 1&_1(C) andy3(C )_: (o3 =C12+ C13—
¥1(C). Using TR,¥2(C) = ¢2(C), ¥3(C) = ¥3(C). Also, EF onC gives

¥1(C) + ¥2(C) + ¥3(C) =10+ 12+ 13, OF
¥1(C) + (cr12+ ¢10— ¥1(C)) + (124 c13— ¥1(C)) =c10+ c12+ ¢13,  or
1,01(6) =C12.

Hencey2(C) = ci0, ¥3(C) = c13. From Eq. (15)31(C) > c12, ¥2(C) > c10. Using
EF onC we can conclude that;(C) = c12 andy2(C) = c10, i.€. the allocation is unique.

The case1g > c¢20 > c12is similar.

This completes the proof of the cagé| = 2.17

Suppose the theorem is true for @l C2, where|N| < m. We will show that the result
is true for allC € C2 such tha{N| = m.

Let C € C2. Without loss of generality, assumeg = Mingey cxo.X® Thus (10) €
gn(C). There are two possible cases.

Case 1. c10 = Mingey+\(13 k- Then choosg € N such that(j0) € gy (C) or (j1) €
gn(C).

Case2. c1j = Minge y+\(1) cak- Then from Lemma 1(1j) € gy (C).

In either case, le€ denote the restriction of on {1, j}. Then, from the case when
#N = 2, it follows thatyr1 (C ) = Mingcy+\ (1) c1x.

Now, by iterative elimination of extreme points and repeated application of EPM, it
follows that v1(C) < ¥1(C) = MiMgey+\ (1) cux- But, C € C2, andy satisfies EF, TR

17 Note that these three cases cover all possibilities sieality between different costs will result in the
matrix not being irc2.
18 This is unique a€” € C2,.
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and EPM. So, from Lemma 4, it follows thgt (C) > mingcy+\(1) cx- Henceyr1(C) =
mink€N+\{1} Clk = X1 (Say).

We remove 1 to get reduced mati@¥’ . From Lemma 2C" € C2. By TR, Y (CY) =
¥ (C) Yk # 1. From the induction hypothesis, the allocation is uniqucé:ﬁSlnand hence
oncC.

This completes the proof of the theorenta
We now show that the three axioms used in the theorem are independent.

Example 6. We construct a rule which satisfies EPM and TR but violates EF.
Let ¢ (C) = ¥ (C) + € Yk, where

€ > E Cij-

(ij)egn(C)

Sincey * satisfies EPM¢ also satisfies EPM. Moreover, the restriction on the value of
€ ensures that the off-diagonal elements in the reduced matrices are not positive. Hence,
the reduced matrices always lie outsi@leSo, TR is vacuously satisfied lgy Also, since
Y i1 P (C) =341 YL (C) 4+ ne > ¢(N), ¢ violates EF.
To construct the next example we need to define the conceptrofcest. partition.
Givenc, letgy (C) be the (unique) m.c.s.t. 6f. Supposey (C) = gy, Ugn, - - -Ugng
where eaclgy, is the m.c.s.t. oV for the matrixC restricted toN,j, with Ule Ny =N
andN; N N; = @. We will call such a partition the m.c.s.t. partition &f

Example 7. We now construct a rule which satisfies EF and TR, but does not satisfy
EPM.

Let N =[N,..., N7] be the m.c.s.t. partition andV¥ = n,. Let C* be the restriction
of C over N;*. First, calculatey* separately for eac’. Consider anyn,. If n, = 1,
ux(C) = cxo Wherek € N;. Forn; > 2,

(i) wk(C) =y (C) Yk # b1 b,
(i) wpn-1(C) =9}, 1 (C") + M andupn (C) = ¥, (C') — M, where

M > Z Cij-

(ij)egn(C)

EF is obviously satisfied. if; > 2, u satisfies TR becausg* satisfies TR. If;; = 2 then
TR is vacuously satisfied as the reduced matrix lies outSidgut this allocation violates
EPM. In order to see the latter, consider the following maftix

0 1 3
C:(l 0 2).
3 20

Then,gn (C) = {(01), (12)}. Clearly, 2 is an extreme point @. Let C be the restriction
of C over {0,1}. Then,u1(C) =14+ M > 1= p1(C) and hence EPM is violated.
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We remark in the next theorem that the Bird rBlsatisfies EF and EPM. Sinde# v *,
it follows that B does not satisfy TR. Here is an explicit example to show thatolates
TR:

0 2 35 3
2 0 15 1
35 15 0 25
3 1 25 O

Then, B1(C) = 2, B2(C) = 1.5 and B3(C) = 1. The reduced matrix i€§9’1(c> is shown
below:

0O 15 1
tr _
el o) = (1.5 0 05) .
1 05 O
Then,Bz(Cgl(C)) =05 anng(Cgl(C)) = 1. Therefore TR is violated.

C =

However, B does satisfysource consistency on the domairC?. In fact, we now show
that B is the only rule satisfying EF, EPM and SR.

Theorem 3. Over the domain C1, arule ¢ satisfies SR, EFand EPMiff ¢ = B.

Proof. We first show thatB satisfies all the three axioms. EF and EPM follow trivially
from the definition. It is only necessary to show tiBasatisfies SR. B
Let (10) € gn(C). Then, B1(C) = co1. Let us denote the reduced matltibgr1 by C.

From Lemma 3C e C1. Also, the m.c.s.t. oveN \ {1} corresponding t@ is

EN\(1} = {(ij) | either(ij) € gn (C) with i, j # 1 or (ij) = (I0)
where(1]) € gn(C)}.

Also, for alli, j € NT\ {1}, ¢;j = cij if (ij) € gn(C), and fork € N \ {1}, cxo = ci if
(1k) € gn(C). Hence, for allk € N \ {1}, Ckak) = ckak), Wherea (k) is the immediate
predecessor df in gy (1. S0,Bi(C) = By(C) forall k e N \ {1} and B satisfiessource
consistency.

Next, we show thaB is the only rule ove€! which satisfies all the three axioms. This
proof is by induction on the cardinality of the set of agents.

We remark that the proof for the calgé| = 2 is virtually identical to that of Theorem 2,
with SR replacing TR and Lemma 5 replacing Lemma 4.

SupposeB is the only rule satisfying the three axioms, for @l C1, where|N| < m.
We will show that the result is true for all € ¢ such thaiN| = m.

Let C e CL. Without loss of generality, assuni&0) € gy (C). There are two possible
cases.

Case 1. There are at least two extreme pointghfsaym, andmsy.

First, removem; and consider the matri<™t, which is the restriction ofC over
(NT\ {m1}). By EPM, v; (C) < ¥;(C™) for all i # mj. As C"™ has(m — 1) agents,
the induction hypothesis gives (C™!) = ciq ). SO,¥i (C) < cin@) Vi # m1. Similarly by
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eliminatingm, and using EPM, we gef; (C) < ciq() Vi # m2. Combining the two, we
gety; (C) < cigi) Vi €N.

But from EF, we know thad ", _, i (C) = c¢(N) =),y Cia()- Thereforey;(C) =
cia(i) Vi € N, and hence the allocation is unique.

Case 2. If there is only one extreme point @f, thengy (C) must be a line, i.e. each agent
has at most one follower. Without loss of generality, assume 1 is connected to 2 and 0.
Let C be the restriction of® over the se{0, 1, 2}. By iterative elimination of the extreme
points and use of EPM we geit; (C) < ¥, (C). Using the induction hypothesis, we get
¥1(C) < c10andyr2(C) < c12.

Suppose)1(C) = x1 = c10 — €, wheree > 0. Now consider the reduced matrtﬁér
which will be denoted b)C It can be easily checked thatn (1) is also a line where 2 is
connected to 0. Thuﬁz(C) = C20=Min(czq, c12+ c10— ¥1(C)) = mln(cz(), c12+¢€). So,
I/IZ(C) > c¢12 with equality holding only ife = 0. By SR,y2(C) = ¥2(C). But from EPM
¥2(C) < ¥2(C) = c12. This is possible only it = 0. Thereforeyr1 (C) = c10. Using SR
and the induction hypothesis, we can conclude that B. O

We now show that the three axioms used in Theorem 3 are independent.

A rule which violates EF but satisfies SR and EPM can be constructed using Example 6,
¥* being replaced by.

The rule obtained by replacing™ with B in Example 7, violates EPM but satisfies EF
and SR.

Finally, ¢* satisfies all the axioms but SR. Here is an example to show that our rule
may violates SR:

0 2 3 4
c_|2 0 15 1
3 15 0 35
4 1 35 0

Then, 3 (C) = 1, ¥4(C) = 2 andy%(C) = 1.5. The reduced matrix i§
/0 25 2
C= (2.5 0 35) .
2 35 O

¥3(C) =25 andy3(C) = 2. Therefore SR is violated.
In Theorem 2, we have restricted attention to matrice@nThis is becausg* does
not satisfy TR outsid€2. The next example illustrates.

Example 8. Consider
0 3 4

C =

whw
N O
R ON

5
1
0

Then, g}v(C) = {(10), (12), (23)} and 812v(C) = {(30), (32), (21)} are the two m.c.s.t.
corresponding taC. Taking the average of the two cost allocations derived from the
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algorithm, we gety*(C) = (2.5, 1.5, 2). If we remove 1, which is connected to ogﬁ,,
the reduced matrig is

R 0 25 3
C= (2.5 0 1) .
3 1 0

Then,y5(C) =1 andy3(C) = 2.5. So, TR is violated.
Remark 3. Note that in the previous exampig lies outsideC. If we take a matrix in
Ct\ €2, then Lemma 2 will no longer be valid—the reduced matrix may lie out€ile
even when a node connected to the source pays the minimum cost amongst all its links.
Thus, y* will satisfy TR vacuously. But there may exist allocation rules other tidn

which satisfies EF, TR and EPM owét.
Similarly, B does not satisfy SR outsid#.

Example 9. Consider the same matrix as in Example 8. RecallB{g) =(25,15,2).
If we remove 1, which is connected to ogﬁ,, the reduced matrig is

/0 25 3
C= (2.5 0 1) .
3 1 O
Then,B»(C) = 2.5 andB3(C ) = 1. Therefore SR is violated.

Remark 4. An interesting open question is the characterisationydf using cost
monotonicity and other axioms.
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Appendix A

Here, we present the proofs of Lemmas 1-5.
Lemmal. Let C €Cy,andi € N.If cjx = miney+ g cir, then (ik) € gn (C).
Proof. Supposeik) ¢ gn (C). As gn(C) is a connected graph oval™, 3j e N\ {i, k)
such that(ij) € gn(C) andj is on the path betweenandk. But, {gy U (ik)} \ {(ij)} is

still a connected graph which costs no more thaniC), ascix < ¢;;. This is not possible
asgy(C)istheonlym.c.s.t.of. O
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Lemma 2. Let C € C§, and (01) € gn (C). Let Y1(C) = Miney+\(1y cix- Then, C ) €
C

2
NA{L}

Proof. We will denotecgl(c) by C for the rest of this proof.
Lety1(C) = mink€N+\{1} c1 = cue+ (say).
Suppose there existsj) € gy (C) such that, j # 1. Without loss of generality assume
i precedesj in gn(C). Since(01), (ij) € gn(C), (1)) ¢ gn(C). Then,c1j > c¢;j. As
Y1(C) < ci1, i1 + c1j — Y1(C) = c1j > ¢ij. Hencec;; = ¢;;V(ij) € gn(C), such that
Now, suppose there ise N* such thatj # k* and(1j) € gy (C). Since(1j), (1k*) €
gn(C), (jk*) ¢ gn(C). Hencecy; < cx+j. Thus,
Cixj = min{ (Clj + c1px — wl(C)), Ck*j} = min(clj, Cixj) =cC1j-
Next, letgny (1}, be a connected graph over™ \ {1}, defined as follows.
2wy = {(i)) | either(ij) € gn (C) sti, j # 1 or (i) = (k*])
where(1l) € gn (O)}.

Note that no two edges have equal cosginy;.
Also,

Yood@i= Yy cj—cw. (A1)

(ij)egn\( (ij)egn(C)

We prove thaC belongs tcCIZV\{l} by showing thagx\ 1) is the only m.c.s.t. o€ .
Suppose this is not true, so trp}r,\{l} is an m.c.s.t. corresponding . Then, using

(A1),
Z Cij < Z Cij — Clk*. (A.2)

(ij)eg;/\(l} (ij)egn(C)
Let gy, =&"U g2, where
gt ={UN 1) egyy cii =3} =g \&"
If (ij) € g2, then
¢ij = min(cij, c1i 4 c1j — ¥1(0)) = cui + c1j — ¥1(C) > maxX(cy, c1;),
where the last inequality follows from the assumption thatC) = min,c y+\(1; c1x- SO,
Cij = cij if (ij) € gt
>maxcy, c1;) i (if) € g% (A.3)

Now, extendg;"v\{l} to a connected graph), over Nt as follows. Lettingg = {(1i) |
(i]) € g%, j € Ui k*. g} ()}, define

gy=g' UM ug.
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Claim. g}, is a connected graph ovat* which is distinct fromgy (C).

Proof of the claim. It is sufficient to show that everye N* \ {1} is connected to 1
in g} Clearly, this is true foi = k*. Take anyi € Nt \ {1, k*}. Let UG, k* gy =

{mo,m1, ..., m,41} wheremo =i andm ;1 = k*.19If all these edgesm,m, 1) ¥Vt < p
are ing?, then they are also iy » and there is nothing to prove.

So, suppose there isi,m; 1) € g2 while all edges if{(mom31), ..., (m,—1m,)} belong
to g1. In this case(m;1) as well as all edges if(mom1), ..., (m,—1m,)} belong tog)y .
Hence, is connected to 1.

Supposeg), = gn(C). By assumptiongy(1; and g;t,\{l} are different graphs. Then,
there is some linkij) in gn\(1y which is not present iy, ;. From the definitions of
gw\y and C, (ij) is of the form(lk*) for somel # 1. Let! be connected to somein
g;"v\{l}, wherer # 1, k*. Note thatc;« = ¢j1. But

¢y =ci1 + ey — ¥1(C) > maxea, ¢r1),
where the last inequality follows from the fact that £ k* and soy1(C) < min(cy1, c14).
But, then one can delet@r) and add(lk*) in gj‘v\{l}, which is not possible since it an
m.c.s.t. ofC. This contradiction establishes the clainm

To complete the proof of the lemma, note that
Z Cij = Z Cij + Clex + Z Cli
(ij)egy (ij)egt (ij)eg
whereg has been defined in the specificationg@f. Using (A.3),
Z ¢ij < Z Cij +cuex + Z Cij = Z Cij + C1i*.
(ij)egy (ij)egt (ij)eg? (€8N
Finally, using (A.2),
Y aw< ¥ o
(i))egy (ij)egn(C)

But this contradicts the assumption tlzat(C) is the unique m.c.s.t. faf. O

Lemma 3. Let C € Cy,, (10) € gn(C). Suppose ¥1(C) = coa. Then Cyc € c},\{l}.

Proof. Throughoutthe proof of this lemma, we den L(C) by C.

We know v1(C) = co1. Suppose(ij) € gy (C) such that{i, j} N {0,1} = @#. Then
Cij = Cij-

On the other hand if(i0) € gn(C), and i # 1, then ¢o; = min{(ci1 + c10 —
¥1(C)), co;} = min(c;1, cio) = cio. Note that the last equality follows from the fact that
(i0) € gn (C) but (i1) ¢ gn (C) implies thatc;1 > c;o.

19 This path exists becaus;, |, is a connected graph.



246 B. Dutta, A. Kar / Games and Economic Behavior 48 (2004) 223-248

If (i1) € gn(C), thencio = min{(ci1 + c10 — ¥1(C)), cio} = Min(cia, cio) = ci1, as
(i1) € gn(C) but (i0) ¢ gn (C).
Now we construcga (1}, & connected graph ovar \ {1} as follows:
gn = {G)) | either(ij) € gn(C) s.t.i, j # 1 or (ij) = (10)
where(l1) € gy (O)}.

Then, g1y must be the only m.c.s.t. @ . For if there is anothegy, ;, Which is also

an m.c.s.t. ofC, then one can show thgly (C) cannot be the only m.c.s.t. corresponding
toC.2° [

Lemma 4. Suppose ¢ satisfies TR, EPM and EF. Let C e C2. If (i0) € gn(C), then
Yi(C) > minkem\{i} Cik -

Proof. Consider anyC € C%, (i0) € gy(C), and ¢ satisfying TR, EPM, EF. Let
¥ (C) = x, andc;, = Mingey+\ gy cik- We want to show that; > c;y,.
Choosej ¢ N*, and defineV = N U {;}. LetC e CI% be such that

(i) C coincides withC on N,
(ii) forall ke NT\ {i},
Ejk > E,‘j + Cim > E,‘j > Z Cpq-
(Pg)egn(C)

Hencegy(C) = gn(C) U{(i)}. B _

Notice that;j is an extreme point of. Denotingy (C ) = x, EPM implies that

xr =x;y VkeN. (A.4)

We prove the lemma by showing th&t> iy = cim.

LetCY =C’,andN' =N\ {i}, ¥/ (C') = x'. ASSUME; < i

Casel. C'e(%,.
Suppose there is sontes N’ such that(ik) ¢ gﬁ(f). Let!/ be the predecessor bfin
gy (C). Since(kl) € gy (C) and(ik) ¢ g5 (C), &k < &ki. AlSO, &1 = &im > Xi. Hence,
Cly = MIN(Eit, Ei + G — %) = Eur- (A.5)
Now, considek € (N U{0}) \ {m, j} such thatik) € g5 (C). Note that(km) ¢ g5(C)
since(im) € g5 (C) from Lemma 1. Hencegy, > ik since(ik) € g5(C) and (km) ¢
gx(C). So,

Chm = MIN(Ctm, Cik + Cim — Xi) > Cik. (A.6)

20 The proof of this assertion is analogous to that @ torresponding assertion in Lemma 2, and is hence
omitted.
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Take any(kl) ¢ gx(C). Suppose there exis(s1s2) € g5 (C) With 51,50 € U(k, 1,
g5 (C)). Then eithersy, s2 € Uk, i, g5 (C)) or s1,s2 € U(l, i, g5 (C)). Without loss of
generality, assumsg, s € U (k, i, gﬁ(é)). Then,c,5, < Cx andcy,s, < Cri. ASX; < Ci,

, o i}
g = MIN(Cri + Cit — Xi, Ck1) > Cyps- (A7)

Next,

/

Cj

m= min(c'-jm, Cij + Cim — Xi) = Cij + Cim — X;. (A.8)
Since for alls € (N’ U{0}) \ {m, j}, C;'z =Cij + Cit — X; > C.,jm’ (jm) € gy (C).
From TR, we have; =i forall k € N'. Using EF, and Egs. (A.5)—(A.8),
Z Xk = Z xp=c(gn(C)) > c(8x(T)) — Xi- (A.9)
keN\{i} keN’

But this violates EF since

Z)Ek > c(gﬁ(a)).

keN
Case2.C' ¢C2,.
This implies that there exigipn), (kl) such that;m = ¢}, and both(pn), (ki) belong

to some m.c.s.t. (not necessarily the same one) correspondirig to

Note thati ¢ {p,n, k,1}. So, if (pn) € g5(C), then from (A.5) ¢, = c;m. Similarly, if
(k) € g5 (C), thency = c,. So, both pairs cannot be jy; (C ) sinceC € C]%.

Without loss of generality, assume that:) ¢ ¢ (C). Then, from (A.7), it follows that
if U(p,n, g5(C)) ={s1,52,...,5¢}, then

c;m > Cysyy forallk=1,...,K -1 (A.10)
Now, choose; ¢ N*, and defineV = N U {g}. Consider a matri e C2 such that
(i) C coincides withC on N,
(i) &g =ming s gt y
i L - e
(i) cpn > Cqn > MAX iy (pn,g(@))s1)eg(©)) 5t

(iv) ¢q4: is “sufficiently” large for allz # p, n.

Thgn, we havegﬁ(f) = gﬁ(E) U {(¢gp)}, so thatg is an extreme point of. Let
¥ (C)=x. From EPM,

Xi =X (A.11)

21 Note that this specification of costs is valid because (A.10) is true.



248 B. Dutta, A. Kar / Games and Economic Behavior 48 (2004) 223-248

Now, consider the reduced matifx= @_’. We assert that € 012\7\{’,}.22 This is because

(pn) is now “irrelevant” since in the m.c.s.t. correspondin@‘tq) andn will be connected
through the patlipg) and(gn). To see this, note the following.
First,

, L _ I A ~ A A ~
Cpn = mm(cpi + Cin — Xi, Cpn) < mm(cpi + Cin — Xi, Cpn) =Cpn

sincecp, = Cpn, Cpi = Cpi, Cin = Cip @Ndx; > x; from (A.11).

Second,c},, > ¢4n by construction. Lastlyéy, = cqn SINCe Cgn = MIN(Cqn, Cqi +
¢in — %) andé,; has been chosen sufficiently large.

S0, Cpn > Cqn. Since (gp) € gﬁ\{i}(C) from Lemma 1, this shows thatpn) ¢

g}’v\\{,’}(c)’-‘
SinceC € C]%\{l_}, we apply the conclusion of Case 1 of the lemma to conclude that
Xi = Cim = Cim. Equation (A.11) now establishes that> ¢;,,. O

The proof of Lemma 5 is almost identical to that of Lemma 4, and hence is omitted.
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